
UNISIM

TMS320C3X Manual

Gilles Mouchard
Daniel Gracia Pérez

Reda Nouacer

CEA List

1 User guide

1.1 Simulator features

The TMS320C3X is a 32-bit floating-point DSP from Texas Instrument. The UNISIM TMS320C3X
simulator features:

• Simulation of the TMS320C3X instruction set

• A simulation speed average around 10 MIPS and up to 28 MIPS on a 2.4 Ghz Core2 Duo
machine under Linux

• Support for instruction cache

• Support for TI COFF v0, v1, and v2 (either with big-endian or little-endian headers)

• Built-in debugger (Inline Debugger)

• Support for GDB serial remote protocol (GDB server)

• Support for TI C I/O

Note: Support for the GDB serial remote protocol is experimental in the sense that although
some GDB versions supported the TMS320C3X target (see http: // www. elec. canterbury.

ac. nz/ c4x/ doc/ c4x-tools. html ), these versions are no longer available on the web. As a
consequence this simulator functionality could not be tested and validated for the TMS320C3X
target but only for ARM7/9, PowerPC and HCS12X targets.

1.2 Status of implementation

The UNISIM TMS320C3X has been developed using the following documentation:

• TMS320C3x Users Guide (SPRU031F, 2558539-9761 revision L, March 2004)

• TMS320C3x/C4x Assembly Language Tools Users Guide (SPRU035D, June 1998)

• TMS320C3x/C4x Optimizing C Compiler Users Guide (SPRU034H, June 1998)

The simulator current implementation completely decodes the TMS320C3X instruction set.
All registers are present but no on-chip devices are implemented. The simulator has complete
support for:

• integer instructions (2-ops, 3-ops, parallel ops, load/store)

1

http://www.elec.canterbury.ac.nz/c4x/doc/c4x-tools.html
http://www.elec.canterbury.ac.nz/c4x/doc/c4x-tools.html


RAM

TMS320C3XGDB Server

TMS320C3X

Debugger

COFF
Loader

TMS320C3X
Application

TI C I/O Host
File system

Inline-debugger> s
0x000017ce <_extract_r8g8b8_from_YUVblock()+0x3c>:
0x000017ce:0x2101001b ADDI3 RC, R0, R1
Inline-debugger> s
0x000017cf <_extract_r8g8b8_from_YUVblock()+0x3d>:
0x000017cf:0x50000001 LDIU R1, R0
Inline-debugger> s
0x000017d0 <_extract_r8g8b8_from_YUVblock()+0x3e>:
0x000017d0:0x03e0fff5 ASH -11, R0
Inline-debugger> s
0x000017d1 <_extract_r8g8b8_from_YUVblock()+0x3f>:
0x000017d1:0x09e0ffec LSH -20, R0
Inline-debugger> s
0x000017d2 <_extract_r8g8b8_from_YUVblock()+0x40>:
0x000017d2:0x21000100 ADDI3 R0, R1, R0
Inline-debugger> s
0x000017d3 <_extract_r8g8b8_from_YUVblock()+0x41>:
0x000017d3:0x03e0fff4 ASH -12, R0

Figure 1: TMS320C3X simplified schematic.

• floating point instructions (2-ops, 3-ops, parallel ops, load/store)

• control instructions (branches, delayed branches, RPTS, RPTB), but iack and swi in-
structions

• interlocked instructions, but sigi instruction

• power instructions

• interrupt handling

The current status of the simulator allows to run any integer or floating-point benchmark.
However, during the validation process of the UNISIM TMS320C3X simulator, four hardware
bugs have been found on our development board, and one software bug in Code Composer. The
UNISIM TMS320C3X simulator can emulate these bugs (see Section 1.7) if they are enabled:

• LDF || LDF bug: From our experiments on the development board, uncomprehensibly
src1 is not correctly transformed to a valid 0.0 when the src1 exponent is 0x80. Simulator
parameter cpu.enable-parallel-load-bug enables this bug.

• STF || STF and STI || STI bugs: From our experiments on the development board, the
first store is never performed. Simulator parameter cpu.enable-parallel-store-bug

enables these bugs.

• RND bug: TMS320C3x Users Guide says that the rnd instruction does not affect the Z flag
however the real hardware systematically sets Z to 0. Simulator parameter cpu.enable-rnd-bug
enables this bug.

• lseek bug: From our experiments on the development board, function lseek from RTS30.LIB

has a 32-bit return value truncated to 16 bits. Simulator parameter ti-c-io.enable-lseek-bug
enables this bug.

• floating point instructions bug: All the float instructions can use non-extended registers
(all the registers different than R0-R7). However their behavior when using non-extended
registers is not documented, and from our experiments on the development board their
behavior is unexpected. By default, the simulator does not allow the use of non-extended
registers for float instructions (obviously with the exception of the FIX and FLOAT in-
structions when the use of non-extended registers is documented). Simulator parameter

2



cpu.enable-float-ops-with-non-ext-regs allows the use of non-extended registers for
float instructions. Note that the behavior of the instructions when using non-extended
registers has been deduced from our experiments with the evaluation board, but that they
can not be validated due to the lack of documentation and unexpected behavior.

1.3 Compiling the simulator

Up-to-date instructions for compiling the simulator are available in the INSTALL file.

1.4 Invoking the simulator

The general command line format for invoking the simulator is the following:

tms320c3x [<options>] <binary to simulate>

The binary to simulate must be a TI’s COFF v0, v1 or v2 file. See 1.5 to generate such files.

The command line options of the simulator are:

• --set <param=value> or -s <param=value>: set value of parameter ’param’ to ’value’

• --config <XML file> or -c <XML file>: configures the simulator with the given
XML configuration file

• --get-config <XML file> or -g <XML file>: get the simulator configuration XML
file (you can use it to create your own configuration. This option can be combined with
-c to get a new configuration file with existing variables from another file

• --list or -l: lists all available parameters, their type, and their current value

• --warn or -w: enable printing of kernel warnings

• --doc <Latex file> or -d <Latex file>: enable printing a latex documentation

• --version or -v: displays the program version information

• --share-path <path> or -p <path>: the path that should be used for the share di-
rectory (absolute path)

• --help or -h: displays this help

1.5 The Texas Instrument cross-compiler for TMS320C3X

To compile programs for the TMS320C3X simulator, you can use the free evaluation cross-
compiler for TMS320C3X running on a Windows host (SPRC147, TMS320C3x DSK Software)
available at http://focus.ti.com/docs/toolsw/folders/print/tmdsdsk33.html. This cross-
compiler also runs under other x86 operating systems such as Linux or MacOSX using Wine, a
Windows emulator (http://www.winehq.org/).

Note: Be aware that any call to the C standard library requires linking the program with
RTS30.LIB. Moreover, any call to I/O functions (open, close, read, write, printf, . . . ) requires
TI C I/O support enabled in the TMS320C3X simulator.

The cross-compiler tool chain (CL30.EXE, LNK30.EXE, ASM30.EXE, MK30.EXE, ar30.EXE,

...) should be in your PATH. The shell variable C DIR points to the location where the cross-
compiler should search for the standard C headers and libraries. Suppose the tool chain is
installed in C:\TI. Windows users should add the following in their AUTOEXEC.BAT:

3

http://focus.ti.com/docs/toolsw/folders/print/tmdsdsk33.html
http://www.winehq.org/


set PATH=C:\TI\TIC3X4X\BIN;%PATH%

set C_DIR=C:\TI\TIC3X4X\INCLUDE;C:\TI\TIC3X4X\LIB

Wine and GNU bash users should add the following in their .bashrc:

export PATH=${HOME}/.wine/drive_c/TI/TIC3X4X/BIN:${PATH}

export C_DIR=C:\\TI\\TIC3X4X\\INCLUDE\;C:\\TI\\TIC3X4X\\LIB

1.6 The GNU binutils

The GNU binutils are a set of open source tools to manipulate binaries. They provide an
assembler, a linker, and an object dump utility among others. The last version, at the time of
writing this document, is available at: ftp://ftp.gnu.org/gnu/binutils/binutils-2.19.1.
tar.gz The GNU binutils support TI COFF v0, v1 and v2 binary files for both TMS320C3X
and TMS320C4X targets.

To compile the binutils and install them into /opt/c4x-coff:

$ ./configure --target=c4x-unknown-coff --prefix=/opt/c4x-coff

$ make

$ make install

A key feature of the GNU binutils is the ability of objdump to dump/disassemble a TI COFF
binary for the TMS320C3X. For instance, the following command will dump file test.out into
file dump.txt:

$ /opt/c4x-coff/bin/c4x-unknown-coff-objdump -D test.out > dump.txt

1.7 Simulator configuration

The simulator stores its configuration (a set of parameters) in a XML configuration file.

The simulator can provide the user with a default XML configuration file with option -g:

$ tms320c3x -g default_sim_config.xml

The simulator can load a XML configuration file with option -c:

$ tms320c3x -c sim_config.xml

Note: Although it’s not strictly necessary, parameter inline-debugger.memory-atom-size

should be set to value 4 as the TMS320C3X memory is not byte-addressable. If this parameter
is not set to 4, presentation of the memory content and disassembly may seem unconventional
in the inline debugger.
The available parameters are summarized in table below:

Global
Name: enable-gdb-server Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Enable/Disable GDB server instantiation.

Name: enable-inline-debugger Type: parameter

4

ftp://ftp.gnu.org/gnu/binutils/binutils-2.19.1.tar.gz
ftp://ftp.gnu.org/gnu/binutils/binutils-2.19.1.tar.gz


Default: false Data type: boolean

Valid: true, false

Description:
Enable/Disable inline debugger instantiation.

Name: enable-press-enter-at-exit Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Enable/Disable pressing key enter at exit.

Name: kernel logger.file Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Keep logger output in a file.

Name: kernel logger.filename Type: parameter

Default: logger output.txt Data type: string

Description:
Filename to keep logger output (the option file must be activated).

Name: kernel logger.std err Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
Show logger output through the standard error output.

Name: kernel logger.std err color Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Colorize logger output through the standard error output (only works if std err is active).

Name: kernel logger.std out Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Show logger output through the standard output.

Name: kernel logger.std out color Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Colorize logger output through the standard output (only works if std out is active).

5



Name: kernel logger.xml file Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Keep logger output in a file xml formatted.

Name: kernel logger.xml file gzipped Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
If the xml file option is active, the output file will be compressed (a .gz extension will be
automatically added to the xml filename option.

Name: kernel logger.xml filename Type: parameter

Default: logger output.xml Data type: string

Description:
Filename to keep logger xml output (the option xml file must be activated).

cpu
Name: cpu.max-inst Type: parameter

Default: 0xffffffffffffffff Data type: unsigned 64-bit integer

Name: cpu.trap-on-instruction-counter Type: parameter

Default: 0xffffffffffffffff Data type: unsigned 64-bit integer

Name: cpu.mimic-dev-board Type: parameter

Default: true Data type: boolean

Valid: true, false

Name: cpu.enable-parallel-load-bug Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
When using parallel loads (LDF src2, dst2 —— LDF src1, dst1) the src1 load doesn’t
transform incorrect zero values to valid zero representation, instead they copy the contents
of the memory to the register. Set to this parameter to false to transform incorrect zero
values..

Name: cpu.enable-rnd-bug Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
If enabled the ‘rnd‘ instruction sets the Z flag to 0 systematically, as it is done in the
evaluation board. Otherwise, Z is unchanged as it is written in the documentation..

6



Name: cpu.enable-parallel-store-

↪→bug

Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
If enabled, when using parallel stores (STF src2, dst2 —— STF src1, dst1) the first store
is treated as a NOP..

Name: cpu.enable-float-ops-with-

↪→non-ext-regs

Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
If enabled non extended registers can be used on all the float instructions, however the
behavior is not documented and can differ between chips revision. If disabled, it stops
simulation when using non extended registers on float instructions..

Name: cpu.verbose-all Type: parameter

Default: false Data type: boolean

Valid: true, false

Name: cpu.verbose-setup Type: parameter

Default: false Data type: boolean

Valid: true, false

loader
Name: loader.filename Type: parameter

Default: Data type: string

Name: loader.dump-headers Type: parameter

Default: false Data type: boolean

Valid: true, false

Name: loader.verbose-write Type: parameter

Default: false Data type: boolean

Valid: true, false

memory
Name: memory.org Type: parameter

Default: 0x0000000000000000 Data type: unsigned 64-bit integer

Description:
memory origin/base address.

Name: memory.bytesize Type: parameter

Default: 0 Data type: unsigned 64-bit integer

Description:
memory size in bytes.

7



rom-loader
Name: rom-loader.filename Type: parameter

Default: c31boot.out Data type: string

Name: rom-loader.dump-headers Type: parameter

Default: false Data type: boolean

Valid: true, false

Name: rom-loader.verbose-write Type: parameter

Default: false Data type: boolean

Valid: true, false

ti-c-io
Name: ti-c-io.enable Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
enable/disable TI C I/O support.

Name: ti-c-io.warning-as-error Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Whether Warnings are considered as error or not.

Name: ti-c-io.pc-register-name Type: parameter

Default: PC Data type: string

Description:
Name of the CPU program counter register.

Name: ti-c-io.c-io-buffer-symbol-

↪→name

Type: parameter

Default: CIOBUF Data type: string

Description:
C I/O buffer symbol name.

Name: ti-c-io.c-io-breakpoint-symbol-
↪→name

Type: parameter

Default: C$$IO$$ Data type: string

Description:
C I/O breakpoint symbol name.

Name: ti-c-io.c-exit-breakpoint-

↪→symbol-name

Type: parameter

Default: C$$EXIT Data type: string

8



Description:
C EXIT breakpoint symbol name.

Name: ti-c-io.verbose-all Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
globally enable/disable verbosity.

Name: ti-c-io.verbose-io Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
enable/disable verbosity while I/Os.

Name: ti-c-io.verbose-setup Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
enable/disable verbosity while setup.

Name: ti-c-io.enable-lseek-bug Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
enable/disable lseek bug (as code composer).

1.8 Debugging the target program

The command line option -s enable-inline-debugger=true enables the inline debugger. The
inline debugger has support for controlling the program execution, inspecting the program and
its data, and putting breakpoints and watchpoints. The user can interact with the debugger
using the following commands:

• Execution commands:

– <c | cont | continue> [<symbol | *address>]:
Continue to execute instructions until program reaches a breakpoint, a watchpoint,
a ‘symbol’ or an ‘address’.

– <s | si | step | stepi>:
Execute one instruction.

– <n | ni | next | nexti>:
Continue to execute instructions until the processor reaches next contiguous instruc-
tion, a breakpoint or a watchpoint.

– <r | run>:
Restart the simulation from the beginning (not yet supported).

• Inspection commands:

– <dis | disasm | disassemble> [<symbol | *address>]:
Continue to disassemble starting from ‘symbol’, ‘address’, or after the previous dis-
assembly.

9



– <d | dump> [<symbol | *address>]:
Dump memory starting from ‘symbol’, ‘address’, or after the previous dump.

– <register name>:
Display the register value.

– <m | monitor> [<variable name>]:
Display the given simulator variable (displays all variable names if none is given).

– <p | prof | profile>

<p | prof | profile> program

<p | prof | profile> data

<p | prof | profile> data read

<p | prof | profile> data write:
Display the program/data profile.

• Breakpoints/Watchpoints commands:

– <b | break> [<symbol | *address>]:
Set a breakpoint at ‘symbol’ or ‘address’. If ‘symbol’ or ‘address’ are not specified,
display the breakpoint list.

– <w | watch> [<symbol | *address[:<size>]>] [<read | write>]:
Set a watchpoint at ‘symbol’ or ‘address’. When using ‘continue’ and ‘next’ com-
mands, the debugger will spy CPU loads and stores. The debugger will return to
the command line prompt once a load or a store accesses to the given ‘symbol’ or
‘address’.

– <del | delete> <symbol | *address>:
Delete the breakpoint at ‘symbol’ or ‘address’.

– <delw | delwatch> <symbol | *address> [<read | write>] [<size>]:
Delete the watchpoint at ’symbol’ or ’address’.

• Miscellaneous commands:

– <h | ? | help>:
Display the integrated help.

– <quit | q>:
Quit the built-in debugger.

10



2 Developer guide

The TMS320C3X simulator is the combination of several software components:

• A service infrastructure in unisim/kernel/service (see Section 2.2).

• A built-in logger in unisim/kernel/logger (see Section 2.4.5).

• Several small utility classes in unisim/util (see Section 2.5).

• A TMS320C3X instruction set simulator in unisim/component/cxx/processor/tms320

(see Section 2.1.1).

• A memory in unisim/component/cxx/memory/ram (see Section 2.1.2).

• Service interface definitions in unisim/service/interfaces (see Section 2.3).

• A COFF loader service in unisim/service/loader/coff loader (see Section 2.4.1).

• A TI C I/O service in unisim/service/os/ti c io (see Section 2.4.2).

• An inline debugger service in unisim/service/debug/inline debugger (see Section 2.4.3).

• A GDB server service in unisim/service/debug/gdb server (see Section 2.4.4).

2.1 Simulation Components

2.1.1 TMS320C3X instruction set simulator

The instruction set simulator source code is located in directory:
unisim/component/cxx/processor/tms320.
The UNISIM TMS320C3X instruction set simulator uses an instruction set simulator generator,
GenISSLib. GenISSLib uses an instruction set description (.isa files) located in sub-directory
isa of the instruction set simulator source code directory. Most computations (e.g., integer
computation) are directly performed in these description files. See the GenISSLib manual for
additional informations about the GenISSLib instruction set description language. The sim-
ulator is implemented in class unisim::component::cxx::processor::tms320::CPU, and its
main methods are:

• StepInstruction: Executes one instruction.

• PrWrite: Write a word into memory using service import memory import (see Section 2.2
for details about services). This method is virtual so that it can be reimplemented into a
derived class.

• PrRead: Read a word from memory using service import memory import (see Section 2.2
for details about services). This method is virtual so that it can be reimplemented into a
derived class.

• SetIRQLevel: Set level (0/1, true/false) of an IRQ. IRQ numbering is same as register IF
bit numbering.

• ComputeIndirEA: Compute the effective address for indirect addressing modes.

• ComputeDirEA: Compute the effective address for direct addressing modes.

11



This class is a client and a service (see Section 2.2 for details) that can be connected to a
debugger, a loader, and a memory.

Each register (R0, R1, R2, R3, R4, R5, R6, R7, ar0, ar1, ar2, ar3, ar4, ar5, ar6, ar7,
DP, IR0, IR1, BK, SP, ST, IE, IF, IOF, RS, RE, and RC) is implemented by an instance of
class unisim::component::cxx::processor::tms320::Register. This class has methods to
get/set value of a register and to perform floating point computations.
The table below summarizes the API of the CPU:

Module CPU
Class Name:
unisim::component::cxx::processor

↪→::tms320::CPU

Header:
unisim/component/cxx/processor

↪→/tms320/cpu.hh

Description:
This C++ class implements the TMS320C3X instruction set simulator.

Template Parameters
Name: CONFIG Type: class

Default value: none

Description:
This is a configuration class that is a collection of definitions to parameterize the simulation
model.

Name: DEBUG Type: bool

Default value: false

Description:
Enable/disable debug.

Run-Time Parameters
Name: max-inst Type: uint64 t

Default value: 264 − 1

Description:
Maximum number of instructions to simulate. Once this threshold is reached, the CPU
calls virtual method Stop to stop simulation.

Name: trap-on-instruction-counter Type: uint64 t

Default value: 264 − 1

Description:
Number of instructions to simulate before trapping, i.e., calling ReportTrap through ser-
vice import trap import. This is useful to inform the debugger that the CPU has simu-
lated a certain amount of instructions, so that user can take control of the simulation at
this point.

Name: verbose-setup Type: bool

Default value: false

Description:
Enable/disable verbosity of the CPU while setup.

Name: verbose-all Type: bool

Default value: false

12



Description:
Globally enable/disable verbosity of CPU.

Name: enable-parallel-load-bug Type: bool

Default value: true

Description:
When using parallel loads (LDF src2, dst2 || LDF src1, dst1) the src1 load doesn’t
transform incorrect zero values to valid zero representation, instead they copy the contents
of the memory to the register. Set this parameter to false to transform incorrect zero
values.

Name: enable-rnd-bug Type: bool

Default value: true

Description:
If enabled the rnd instruction sets the Z flag to 0 systematically, as it is done in the evalu-
ation board. Otherwise, Z is unchanged as described in the TMS320C3X documentation.

Name: enable-parallel-store-bug Type: bool

Default value: true

Description:
If enabled, when using parallel stores (STF src2, dst2 || STF src1, dst1 or STI

src2, dst2 || STI src1, dst1) the first store is treated as a NOP.

Name: enable-float-ops-with-

↪→non-ext-regs

Type: bool

Default value: false

Description:
If enabled, float instructions can operate over non-extended registers. If disabled, the use
of non-extended registers on float instructions will stop the program execution.

Service Exports
Name: disassembly export Interface:

unisim::service::interfaces

↪→::Disassembly

Description:
The CPU provides clients (e.g. debuggers) with a disassembly capability through this
service export.

Name: registers export Interface:
unisim::services::interfaces

↪→::Registers

Description:
The CPU provides clients (e.g. debuggers) with an access to its registers through this
service export.

13



Name: memory export Interface:
unisim::service::interfaces

↪→::Memory

Description:
The CPU provides clients (e.g debuggers) with an access to memory space through this
service export. Accesses to memory space are non-intrusive, i.e. they do not affect timing
or data placement (e.g. in caches or TLBs).

Name: memory injection export Interface:
unisim::service::interfaces

↪→::MemoryInjection

Description:
The CPU provides clients (e.g debuggers) with an access to memory space through this
service export. Accesses to memory space are intrusive, i.e., they affect timing and data
placement (e.g., in caches or TLBs).

Name: memory access reporting control Interface:
unisim::service::interfaces

↪→::MemoryAccessReportingControl

Description:
The CPU allows a client to enable/disable memory access reporting through this service
export.

Service Imports
Name: debug control import

Mandatory connected: no
Interface:
unisim::service::interfaces

↪→::DebugControl

Description:
This service import allows to interactively control the CPU. Method FetchDebugCommand

of the service import interface returns the control command for CPU: either execute one
instruction or stop simulation.

Name: memory access reporting import

Mandatory connected: no
Interface:
unisim::service::interfaces

↪→::MemoryAccessReporting

Description:
The CPU reports memory accesses (e.g. to a debugger) using this service import.

Name: trap reporting

Mandatory connected: no
Interface:
unisim::service::interfaces

↪→::TrapReporting

Description:
The CPU informs a remote service (e.g. a debugger) that an event has occurred using this
service import.

14



Name: symbol table lookup import

Mandatory connected: no
Interface:
unisim::service::interfaces

↪→::SymbolTableLookup

Description:
The CPU can obtain a translation from an address to a symbol name using this service
import.

Name: memory import

Mandatory connected: no
Interface:
unisim::service::interfaces

↪→::Memory

Description:
The CPU accesses to an external memory using this service import.

Name: ti c io import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::TI C IO

Description:
The CPU allows a remote service (e.g. TI C I/O service) to capture SWI instructions.
Such service should translate target program I/Os to host I/Os.

15



2.1.2 Memory

The source of class unisim::component::cxx::memory::ram::Memory is in directory:
unisim/component/cxx/memory/ram.
Methods ReadMemory and WriteMemory respectively implement read and write memory accesses.
This simulation component provides the interface unisim::service::interfaces::Memory to
other simulation components (e.g. CPU) or services (e.g. the COFF loader).
The table below summarizes the API of the memory:

Module Memory
Class Name:
unisim::component::cxx::memory

↪→::ram::Memory

Header:
unisim/component/cxx/memory

↪→/ram/memory.hh

Description:
This C++ class models a RAM.

Template Parameters
Name: PHYSICAL ADDR Type: class

Default value: none

Description:
This is the C++ type of a memory address (typically uint32 t or uint64 t).

Name: PAGE SIZE Type: uint32 t

Default value: 1 MB

Description:
This is the size of a memory page in the implementation. This parameter is absolutely
not related to an architectural parameter but only a hint to speed-up simulation (memory
usage vs. speed).

Run-Time Parameters
Name: org Type: PHYSICAL ADDR

Default value: 0

Description:
Starting address of the memory (typically 0).

Name: bytesize Type: PHYSICAL ADDR

Default value: 0

Description:
Size in bytes of the memory.

Service Exports
Name: memory export Interface:

unisim::service::interfaces

↪→::Memory

Description:
The memory provides clients (e.g debuggers, loaders or CPUs) with an access to memory
space through this service export. Accesses to memory space are non-intrusive, i.e. they
do not affect timing or data placement.

16



2.2 Service infrastructure

Designing a new emulator, and particularly for a research purposes, means implementing an
instruction set emulator but also involves several software components not directly related to
pure instruction set execution. The most obvious needed software components are memories,
debuggers, loaders, but components such as chipsets and peripherals are still mandatory to
enable running unmodified real world applications. Abstracting the underlying host hardware
is also something useful to emulators. Making all these components running together requires
programming interfaces as much standard as possible.

Usually the programmer faces to the problems of sharing source codes among several em-
ulators, reusing existing source codes, and building a fully functional emulator from all these
heterogeneous pieces of source codes. Most of the time, the software components are strongly
dependent of each other: components are statically linked together through explicit function
calls and adhoc interfaces. Replacing these adhoc interfaces with C++ pure interfaces (C++
classes with only unimplemented virtual methods, see your C++ manual for more details) and
linking the components through pointers is a step toward avoiding such strong dependencies
between the components. But still finding a standard manner to initialize those pointers is nec-
essary. This can be done either by directly writing in those pointers or calling special functions
to do the job.

Another problem with heterogeneous software components is the manner to instantiate and
parameterize them in a standard way, so that it is easier for the component’s user to use a new
component. Usually, parameterizing a component means passing arguments to an initialization
function or a class constructor. It implies that the programmers agree on using only one of
these two solutions or both. Still the programmers must know the setup order of these com-
ponents: it is an error prone process because determining a correct order from the components
documentation will likely fail the first times.

In this section, we present the standard way to share, reuse, link, parameterize and setup
the software components within the TMS320C3X simulator. C++ object oriented program-
ming and pure C++ interfaces enable sharing and reuse. In few words, some special pointers
(classes ServiceImport and ServiceExport) linking the software components (classes Service
and Client) together with some base software component classes have been introduced, thus
enabling easier component composition and connection. The parameterization have been stan-
dardized (class Parameter) and the framework (class ServiceManager) uses additional depen-
dency informations to provide the user with an automatic setup order.

2.2.1 Class hierarchy

Each software component of the UNISIM TMS320C3X simulator is an object (a client and/or
a service). The term Client refers to an object that calls methods of a Service through
a ServiceImport. The term Service refers to an object that exposes its interface to client
through a ServiceExport. ServiceImport acts as gate for a client to call remote methods
of a service. ServiceExport is a mean for a service to export its interface, so that a client
ServiceImport can be bound to it.

Figure 2 presents the object/class hierarchy of the service infrastructure. This class hierar-
chy allows the ServiceManager to see clients and services as a service graph. The base class
of the class hierarchy is class Object. It provides composition (it’s a container) and naming
of objects. Template class Service<SERVICE IF> represents a service implementing interface
SERVICE IF while template class Client<SERVICE IF> represents a client using a service imple-
menting interface SERVICE IF. On Figure 2, classes MyService and MyClient are respectively
examples of a service and a client with interface SERVICE IF. Example class MyService has a

17



member of type ServiceExport<SERVICE IF> to export SERVICE IF to the outside world. Ex-
ample class MyClient has a member of type ServiceImport<SERVICE IF> to import interface
SERVICE IF from a remote service.

Classes ServiceImport<SERVICE IF> and ServiceExport<SERVICE IF> provide a C++ op-
erator >> to allow binding a service import to a service export, so that client is bound to a
service. In the example of Figure 2, class MyClient would use service MyService as soon as
ServiceImport of class MyClient is bound to ServiceExport of class MyService. A concrete
use of service binding import and service is provided in the next section.

Object

Service
<SERVICE_IF>

Client
<SERVICE_IF>

VariableBase

Variable<TYPE>

Parameter<TYPE>

0..N 1..1

is a

MyService MyClient
0..N

1..1
is ais a

ServiceExportBaseServiceImportBase

ServiceExport
<SERVICE_IF>

ServiceImport
<SERVICE_IF>

1..1 1..1 0..N 0..N

0..N
0..N

1..11..1

is ais a

0..N

0..1

Figure 2: Service/Client/Run-time Parameters Object hierarchy.

2.2.2 Building a service graph

Using services implies building a service graph. For instance, consider that the client is a loader,
and the service is a memory. The programmer creates objects loader and memory, see Figure 3.

1 Loader loader("loader");

2 Memory memory("memory");

Figure 3: Client/Service instantiation.

Object loader is a client because it needs a service (reading/writing in memory) from object
memory to load the program. loader has a member import named memory import whereas
memory object has a member export named memory export. The programmer connects the
loader to the memory using loader.memory import and memory.memory export, see Figure 4.

1 loader.memory import >> memory.memory export;

Figure 4: Import/Export connection.

18



Once the programmer has created a service graph, he must perform a call
to ServiceManager::Setup(). ServiceManager::Setup() returns true if setup of each
service and client in the graph has been successful, otherwise it returns false.

2.2.3 Designing a service

A service is a C++ object inheriting from template class Service<SERVICE INTERFACE> Ê,
see Figure 5. SERVICE INTERFACE is a C++ abstract class defining the virtual methods im-
plemented by the service. To export its interface, a service must have a member of type
ServiceExport<SERVICE INTERFACE> Ë. For normalization purposes, the service constructor
should only take two parameters Ì: the service name and the pointer to the parent (a container
service). The pointer to the parent is null if the service is a top level service (no parent). The
base Object constructor Í and the base Service constructor Î must be called with the name
and the pointer to the parent. ServiceExport member constructor must be called with the
export name and a pointer to the owner, i.e. the service itself Ï.

1 class MyService : public Service<MyInterface> Ê
2 {
3 public:

4 ServiceExport<MyInterface> my interface export; Ë
5

6 MyService(const char *name, Object *parent = 0) : Ì
7 Object(name, parent), Í
8 Service<MyInterface>(name, parent), Î
9 my interface export("my-interface-export", this) Ï

10 {
11 }
12 };

Figure 5: Simple service.

2.2.4 Designing a client

A client is a C++ object inheriting from template class Client<SERVICE INTERFACE> Ê, see
Figure 6. SERVICE INTERFACE is a C++ abstract class defining the virtual methods imple-
mented by the service the client can call. To import an interface, a client must have a member
of type ServiceImport<SERVICE INTERFACE> Ë. For normalization purposes, the client con-
structor should only take two parameters Ì: the client name and the pointer to the parent (a
container client). The pointer to the parent is null if the client is a top level client (no parent).
The base Object constructor Í and the base Client constructor Î must be called with the
name and the pointer to the parent. ServiceImport member constructor must be called with
the import name and a pointer to the owner, i.e. the client itself Ï.

1 class MyClient : public Client<ServiceInterface> Ê
2 {
3 public:

4 ServiceImport<ServiceInterface> my interface import; Ë
5

6 MyClient(const char *name, Object *parent = 0) : Ì
7 Object(name, parent), Í
8 Client<ServiceInterface>(name, parent), Î
9 my interface import("my-interface-import", this) Ï

10 {
11 }
12 };

Figure 6: Simple client.

19



2.2.5 Run-time parameters

Run-time parameterization can be added to a service or a client. “Run-time parameterization”
means that the service and/or client can be reconfigured at run-time. It is opposed to “Static pa-
rameterization” or “template parameterization” which allows configuring a service and/or client
at compilation-time. To expose a member variable as a run-time parameter, a client/service
must have a member variable of type Parameter<TYPE>, where TYPE is the C++ type of the
exposed member variable, see Figure 7. Multiple Parameter variables with different TYPEs can
be defined within a client/service. Consider that a service would expose a member variable x

Ê. An instance of class Parameter is defined as a member of the service Ë. The parameter is
bound to the exposed variable Ì in the service/client constructor.

1 class MyService : public Service<MyInterface>

2 {
3 public:

4 Parameter<unsigned int> param x; Ë
5

6 MyService(const char *name, Object *parent = 0) :

7 Object(name, parent),

8 Service<MyInterface>(name, parent),

9 param x("x", this, x) Ì
10 {
11 }
12 private:

13 unsigned int x; Ê
14 };

Figure 7: Exposing a service/client member variable as a run-time parameter.

2.2.6 Setup Order

As explained in section 2.2.2, method Setup of class ServiceManager calls all Setup methods
in the simulator. A problem may occur if setup order is important. For instance, consider
two services: service A and B. A::Setup() uses service B. A correct setup order consist to
first setup service B and then service A. To solve such setup dependency, programmer should
call method ServiceExportBase::SetupDependsOn (e.g. in the class constructor) so that the
service manager can ensure correct setup order. If the service manager finds a cyclic dependency,
ServiceManager::Setup() fails: it generally means that clients and services have been badly
designed.

20



2.3 Service Interfaces

All service interfaces are declared in namespace unisim::service::interfaces and located in
directory unisim/service/interfaces.

2.3.1 Memory Interfaces

These interfaces allow reading/writing from/to memory space. The memory interfaces comes in
two flavors:

• Non-intrusive memory access (unisim::service::interfaces::Memory): It should not
affect timing and data placement (e.g. in caches and TLBs).

• Intrusive memory access (unisim::service::interfaces::MemoryInjection): It can
affect timing and data placement.

The two C++ interfaces are:

1 template <class ADDRESS>

2 class Memory

3 {
4 public:

5 Memory(){}
6 virtual Memory(){}
7

8 virtual void Reset() = 0;

9 virtual bool ReadMemory(ADDRESS addr, void *buffer, uint32 t size) = 0;

10 virtual bool WriteMemory(ADDRESS addr, const void *buffer, uint32 t size) = 0;

11 };

1 template <class ADDRESS>

2 class MemoryInjection

3 {
4 public:

5 MemoryInjection(){}
6 virtual MemoryInjection(){}
7

8 virtual bool InjectReadMemory(ADDRESS addr, void *buffer, uint32 t size) = 0;

9 virtual bool InjectWriteMemory(ADDRESS addr, const void *buffer, uint32 t size) = 0;

10 };

The arguments to methods ReadMemory, InjectReadMemory, WriteMemory, InjectWriteMemory
are:

• addr: the starting address of the data transfer between the memory and the buffer

• buffer: a pointer to the buffer of bytes

• size: the length in bytes to transfer between the memory and the buffer

2.3.2 Debugging Interfaces

These interfaces are intended for the connection of the simulation components (e.g. CPU,
memory, devices, . . . ) with a debugger (e.g. inline-debugger, GDB server, . . . ).

Instruction disassembly. CPU components provide a disassembly capability of the in-
struction set using the unisim::service::interfaces::Disassembly interface for the deb-
buger.

1 template <class ADDRESS>

2 class Disassembly

3 {
4 public:

5 virtual std::string Disasm(ADDRESS addr, ADDRESS& next addr) = 0;

6 };

21



Method Disasm arguments are:

• addr: the byte address of the instruction to disassemble

• next addr: the byte address of the next instruction

and returns a string with the disassembly of the instruction.
Register access. A CPU or a device provides an access to its registers using the unisim::service::interfaces::Registers

interface for the debugger.

1 class Registers

2 {
3 public:

4 virtual unisim::util::debug::Register *GetRegister(const char *name) = 0;

5 };

Method GetRegister arguments are:

• name: the name of the register to retrieve the register interface

and returns a pointer to an unisim::util::debug::Register interface.

1 class Register

2 {
3 public:

4 virtual Register() {}
5 virtual const char *GetName() const = 0;

6 virtual void GetValue(void *buffer) const = 0;

7 virtual void SetValue(const void *buffer) = 0;

8 virtual int GetSize() const = 0;

9 };

Method GetName returns the register name. Method GetValue fills in a buffer with the register
value. Method SetValue sets the register value from a buffer. Method GetSize returns the
register size in bytes.

Step by step execution. A simulation component (e.g. a CPU) leaves control to a
debugger with the unisim::service::interfaces::DebugControl interface.

1 template <class ADDRESS>

2 class DebugControl

3 {
4 public:

5 typedef enum { DBG STEP, DBG SYNC, DBG KILL, DBG RESET } DebugCommand;

6

7 virtual DebugCommand FetchDebugCommand(ADDRESS cia) = 0;

8 };

Method FetchDebugCommand takes the current program counter as argument and returns a
command for the simulation component: either finish the simulation or execute one instruction.

Monitoring memory accesses. An instrumented simulation component provides a mem-
ory access trace using the unisim::service::interfaces::MemoryAccessReporting interface.
Such memory trace is useful for a debugger to monitor memory access.

1 template <class ADDRESS>

2 class MemoryAccessReporting

3 {
4 public:

5 typedef enum { MAT NONE = 0, MAT READ = 1, MAT WRITE = 2 } MemoryAccessType;

6 typedef enum { MT DATA = 0, MT INSN = 1 } MemoryType;

7

8 virtual void ReportMemoryAccess(MemoryAccessType mat, MemoryType mt, ADDRESS addr, uint32 t size)

↪→ = 0;

9 virtual void ReportFinishedInstruction(ADDRESS next addr) = 0;

10 };

22



Method ReportMemoryAccess takes as arguments the memory access type (either read or
write), the memory type (either data or instruction memory), the address of the access, and
the size of the memory access. Method ReportFinishedInstruction takes as argument the
address of next instruction to be executed.

Trap reporting. An instrumented simulation component informs a debugger about an
important event using the unisim::service::interfaces::TrapReporting interface. Such
event is useful for a debugger to pause simulation when such event occurs.

1 class TrapReporting

2 {
3 public:

4 virtual void ReportTrap() = 0;

5 };

Method ReportTrap takes no arguments.
Symbol. A service (e.g. a loader) provides lookup to the symbol table using the unisim::service::interfaces::SymbolTableLookup

interface. This interface is useful for translating addresses to symbol names, and vice-versa.

1 template <class T>

2 class Symbol {
3 public:

4 enum Type {
5 SYM NOTYPE = 0,

6 SYM OBJECT = 1,

7 SYM FUNC = 2,

8 SYM SECTION = 3,

9 SYM FILE = 4,

10 SYM COMMON = 5,

11 SYM TLS = 6,

12 SYM NUM = 7,

13 SYM LOOS = 8,

14 SYM HIOS = 9,

15 SYM LOPROC = 10,

16 SYM HIPROC = 11

17 };
18

19 Symbol(const char *name, T addr, T size, typename unisim::util::debug::Symbol<T>::Type type, T

↪→ memory atom size);

20 const char *GetName() const;

21 T GetAddress() const;

22 T GetSize() const;

23 typename unisim::util::debug::Symbol<T>::Type GetType() const;

24 string GetFriendlyName(T addr) const;

25 };
26

27 template <class T>

28 class SymbolTableLookup {
29 public:

30 virtual const typename unisim::util::debug::Symbol<T> *FindSymbol(

31 const char *name,

32 T addr,

33 typename unisim::util::debug::Symbol<T>::Type type) const = 0;

34

35 virtual const typename unisim::util::debug::Symbol<T> *FindSymbolByAddr(T addr) const = 0;

36 virtual const typename unisim::util::debug::Symbol<T> *FindSymbolByName(const char *name) const

↪→ = 0;

37 virtual const typename unisim::util::debug::Symbol<T> *FindSymbolByName(

38 const char *name,

39 typename unisim::util::debug::Symbol<T>::Type type) const = 0;

40 virtual const typename unisim::util::debug::Symbol<T> *FindSymbolByAddr(

41 T addr,

42 typename unisim::util::debug::Symbol<T>::Type type) const = 0;

43 };

Efficient instrumentation. To limit the impact on simulation performance of memory ac-
cess instrumentation in the simulation components, such instrumentation can be enabled or dis-
abled at run-time using interface unisim::service::interfaces::MemoryAccessReportingControl.

23



1 class MemoryAccessReportingControl

2 {
3 public:

4 virtual void RequiresMemoryAccessReporting(bool report) = 0;

5 virtual void RequiresFinishedInstructionReporting(bool report) = 0;

6 };

2.3.3 Loader Interface

This interface provides basic informations about the loaded program.

1 template <class T>

2 class Loader

3 {
4 public:

5 virtual void Reset() = 0;

6 virtual T GetEntryPoint() const = 0;

7 virtual T GetTopAddr() const = 0;

8 virtual T GetStackBase() const = 0;

9 };

2.3.4 Time Interface

This interface provides the current simulation time of the component using it.

1 class Time

2 {
3 public:

4 virtual double GetTime() = 0; // in seconds

5 };

2.3.5 TI C I/O Interface

An instrumented TMS320C3X instruction set simulator provides a trace of SWI instructions
using the unisim::service::interfaces::ti c io interface. This interface is useful for the
TI C I/O service to capture target program I/Os and translate them to host I/Os.

1 class TI C IO

2 {
3 public:

4 typedef enum

5 {
6 ERROR = -1,

7 OK = 0,

8 EXIT = 1,

9 } Status;

10

11 virtual Status HandleEmulatorInterrupt() = 0;

12 };

24



2.4 Services

2.4.1 COFF loader service

This service provides UNISIM TMS320C3X simulator with a support for TI COFF v0, v1, and
v2 binary files either with little-endian or big-endian headers (see TMS320C3x/C4x Assem-
bly Language Tools Users Guide, Appendix A). The COFF loader service loads the programs
into memory while setup (simulator initialization). The loader can interpret .cinit section
if option -cr of TI C cross-compiler has been used while building the target program (see
TMS320C3x/C4x Optimizing C Compiler Users Guide, section 4.8.1: Autoinitialization of vari-
ables and constants). To configure the COFF loader service see Section 1.7. The source code of
COFF loader service is located in directory unisim/service/loader/coff loader. The table
below summarizes the COFF Loader service API:

Service COFF Loader
Class Name:
unisim::service::loader::coff loader

↪→::CoffLoader

Header:
unisim/service/loader/coff loader

↪→/coff loader.hh

Description:
The COFF loader service allows to load a COFF binary program into a memory and fill a
symbol table. The loader also provides information about the loaded le such as the code
and data locations (base address and size). The COFF loader loads the program during
setup.

Template Parameters
Name: MEMORY ADDR Type: class

Default value: none

Description:
This is the C++ type of a memory address (e.g. uint32 t or uint64 t).

Run-Time Parameters
Name: filename Type: string

Default value: empty string

Description:
The COFF file name to load into the connected memory.

Name: dump-headers Type: boolean

Default value: false

Description:
If true this parameter makes the COFF loader print the file headers on the screen (file
header, section headers, symbol table . . . ) while loading the program.

Service Exports
Name: logger export Interface:

unisim::service::interfaces::

↪→Loader<MEMORY ADDR>

Description:
The COFF loader provides information about the code and data location through this
export.

25



Name: symbol table lookup export Interface:
unisim::service::interfaces::

↪→SymbolTableLookup<MEMORY ADDR>

Description:
The COFF loader provides symbol lookup through this export.

Service Imports
Name: memory import

Mandatory connected: no
Interface:
unisim::service::interfaces::

↪→Memory<uint32 t>

Description:
The COFF loader accesses to the memory through this import.

26



2.4.2 TI C I/O service

This service provides low level I/O (open, read, write, close, . . . ) support on the host machine
for target programs. The TI Run-time support libraries (RTS*.lib) implement a software stack
for standard C I/Os (see TMS320C3x/C4x Optimizing C Compiler Users Guide (SPRU034H,
June 1998), Appendix B). A development board debugger captures target program I/Os at
C$$IO$$. The Run-time support library puts the I/Os in a communication buffer ( CIOBUF )
that the development board debugger translates to host I/Os. The debugger also captures target
program termination at C$$EXIT. The UNISIM TI C I/O service captures and translates target
program I/Os and termination in the same manner as a development board built-in debugger.
To configure the TI C I/O service see Section 1.7. The source code of the COFF loader service
is located in directory unisim/service/os/ti c io. The table below summarizes the TI C I/O
service API:

Service TI C I/O
Class Name:
unisim::service::os::ti c io

↪→::TI C IO

Header:
unisim/service/os/ti c io

↪→/ti c io.hh

Description:
The TI C I/O service provides low level I/O (open, read, write, close, . . . ) support on the
host machine for target programs.

Template Parameters
Name: MEMORY ADDR Type: class

Default value: none

Description:
This is the C++ type of a memory address (e.g. uint32 t or uint64 t).

Run-Time Parameters
Name: ti c io.enable Type: bool

Default value: false

Description:
Enable/disable TI C I/O support.

Name: ti-c-io.warning-as-error Type: bool

Default value: false

Description:
Whether Warnings are considered as error or not.

Name: ti-c-io.pc-register-name Type: string

Default value: "PC"

Description:
Name of the CPU program counter register.

Name: ti-c-io.c-io-buffer-symbol-name Type: string

Default value: " CIOBUF "

Description:
C I/O buffer symbol name.

27



Name: ti-c-io.c-io-breakpoint-

↪→symbol-name

Type: string

Default value: "C$$IO$$"

Description:
C I/O breakpoint symbol name. The TI C I/O service installs a SWI instruction at this
point to capture target program I/O.

Name: ti-c-io.c-exit-breakpoint-

↪→symbol-name

Type: string

Default value: "C$$EXIT"

Description:
C EXIT breakpoint symbol name. The TI C I/O service installs a SWI instruction at this
point to capture target program exit.

Name: ti-c-io.verbose-all Type: bool

Default value: false

Description:
Globally enable/disable verbosity of TI C I/O service.

Name: ti-c-io.verbose-io Type: bool

Default value: false

Description:
Enable/disable verbosity of TI C I/O service while performing I/Os.

Name: ti-c-io.verbose-setup Type: bool

Default value: false

Description:
Enable/disable verbosity of TI C I/O service while setup.

Service Exports
Name: ti c io export Interface:

unisim::interfaces::

↪→TI C IO<MEMORY ADDR>

Description:
The TI C I/O provides target to host I/O translation through this service export.

Service Imports
Name: memory import Interface:

unisim::service::interfaces::

↪→Memory<MEMORY ADDR>

Mandatory connected: no

Description:
The TI C I/O service accesses to the memory while setup through this import. While in
setup it installs two SWI instructions to capture both target I/O and program exit.

Name: memory injection import Interface:
unisim::service::interfaces::

↪→MemoryInjection<MEMORY ADDR>

28



Mandatory connected: no

Description:
The TI C I/O service accesses to the memory while simulation through this import. It
accesses to the I/O buffer in the target program memory and then interprete the content
of this buffer to translate target program I/Os to host I/Os.

Name: registers import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::Registers

Description:
This service import should be connected to a CPU module. The TI C I/O service calls
method GetRegister through this service import to get an interface to the CPU registers.
The TI C I/O service uses methods GetName, GetValue, GetSize and SetValue of that
interface to access to CPU registers. This import is mainly used to get the current PC, so
that the TI C I/O service can distinguish target program I/Os from target program exit.

Name: symbol table lookup import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::SymbolTableLookup<MEMORY ADDR>

Description:
The TI C I/O service uses this service import to get the address of the breakpoints and
I/O buffer from their symbol name.

29



2.4.3 Inline debugger

The inline debugger service is a built-in debugger with a text-based user interface, see 1.8. It
provides instruction level debugging of the target program. Table below summarizes the inline
debugger service API:

Service Inline Debugger
Class Name:
unisim::service::debug

↪→::inline debugger::InlineDebugger

Header:
unisim/service/debug

↪→/inline debugger/inline debugger.hh

Description:
The inline debugger service provides a simple text-based interface to interactively debug a
target application running on a CPU module for the user. The debug is at the instruction
level. The inline debugger may be connected to a CPU module.

Template Parameters
Name: ADDRESS Type: class

Default value: none

Description:
This is the C++ type of a memory address (e.g. uint32 t or uint64 t).

Run-time parameters
Name: inline-debugger.memory-atom-sizeType: unsigned integer

Default value: 1

Description:
Size of the smallest addressable element in memory.

Service Exports
Name: debug control export Interface:

unisim::service::interfaces

↪→::DebugControl<ADDRESS>

Description:
This service export should be connected to a CPU module. The CPU module calls method
FetchDebugCommand through its service import to leave control to the debugger and fetch
a new debug command.

Name: memory access reporting export Interface:
unisim::service::interfaces

↪→MemoryAccessReporting<ADDRESS>

Description:
This service export should be connected to a CPU module. The CPU module calls methods
ReportMemoryAccess and ReportFinishedInstruction through its service import. This
allows the debugger to spy memory accesses and thus handle breakpoints and watchpoints.

Name: trap reporting export Interface:
unisim::service::interfaces

↪→::TrapReporting

30



Description:
This service export should be connected to a CPU module. A CPU module calls method
ReportTrap through its service import. This allows the debugger to break execution on
the simulated CPU once a trap condition is detected by the CPU module.

Service Imports
Name: disasm import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::Disassembly<ADDRESS>

Description:
This service import should be connected to a CPU module. The CPU module should
implement method Disassemble which provides disassembling of the instructions for the
debugger.

Name: memory import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::Memory<ADDRESS>

Description:
This service import should be connected to a CPU or a memory module. The debugger
uses this service import to access to memory using methods ReadMemory and WriteMemory.

Name: memory access reporting

↪→ control import

Mandatory connected: no

Interface:
unisim::service::interfaces

↪→::MemoryAccessReportingControl

Description:
This service import should be connected to a CPU module. The debugger calls meth-
ods RequiresMemoryAccessReporting and RequiresFinishedInstructionReporting

through this service import to enable/disable memory access reporting from the CPU
module.

Name: registers import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::Registers

Description:
This service import should be connected to a CPU module. The debugger calls method
GetRegister through this service import to get an interface to the CPU registers. The
debugger uses methods GetName, GetValue, GetSize and SetValue of that interface to
access to CPU registers.

Name: symbol table lookup import

Mandatory connected: no
Interface:
unisim::service::interfaces

↪→::SymbolTableLookup

Description:
This service import should be connected to a symbol table. The debugger calls method
FindSymbol, FindSymbolByAddr, FindSymbolByName through this service import to trans-
late addresses to symbols and vice-versa.

31



2.4.4 GDB server

The GDB server service emulates the GDB remote serial protocol over TCP/IP (see Debugging
with GDB, Appendix D. GDB Remote serial protocol), so that a GDB client can connect to the
simulator and debug the target program as if it were run on the real hardware. This service
uses an architecture XML description file defined by the architecture-description-filename
run-time parameter (see table below). A sample configuration file for a dummy XYZ big-endian
architecture, with four 32-bit general purpose registers named r0, r1, r2, r3 and a program
counter named pc would be the following:

<architecture name="XYZ" endian="big">

<program_counter name="pc"/>

<register name="r0" size="4"/>

<register name="r1" size="4"/>

<register name="r2" size="4"/>

<register name="r3" size="4"/>

</architecture>

Table below summarizes the GDB server service API:

Service GDB Server
Class Name:
unisim::service::debug

↪→::gdb server::GDBServer

Header:
unisim/service/debug

↪→/gdb server/gdb server.hh

Description:
The GDB server service allows debugging a software running on a simulated hardware by
connecting (over TCP/IP) a GDB client to it (and thus to the simulator). The GDB client
can be either the standard text based client (i.e. command gdb), a graphical front-end to
GDB (e.g. ddd), or even Eclipse CDT. The GDB server service directly speaks to the GDB
serial remote protocol (over TCP/IP), so that a GDB client can connect (over TCP/IP)
to the simulator using GDB command target remote. The GDB server service may be
connected to a CPU module.

Template Parameters
Name: ADDRESS Type: class

Default value: none

Description:
This is the C++ type of a memory address (e.g. uint32 t or uint64 t).

Run-Time Parameters
Name: tcp-port Type: int

Default value: 12345

Description:
The TCP port used by GDB server service to communicate with the GDB client.

Name: architecture-description

↪→-filename

Type: string

Default value: empty string

32



Description:
The path to the architecture description file that the GDB server service must use. The
description file provides retargetability to the GDB server service. The following files
brings support of the ARM, PowerPC and HCS12X processors to the GDB server service:

• unisim/service/debug/gdb server/gdb armv4l.xml

• unisim/service/debug/gdb server/gdb armv5b.xml

• unisim/service/debug/gdb server/gdb powerpc.xml

• unisim/service/debug/gdb server/gdb hcs12x.xml

Service Exports
Name: debug control export Interface:

unisim::service::interfaces

↪→::DebugControl<ADDRESS>

Description:
This service export should be connected to a CPU module. The CPU module calls method
FetchDebugCommand through its service import to leave control to the debugger and fetch
a new debug command.

Name: memory access reporting export Interface:
unisim::service::interfaces

↪→MemoryAccessReporting<ADDRESS>

Description:
This service export should be connected to a CPU module. The CPU module calls methods
ReportMemoryAccess and ReportFinishedInstruction through its service import. This
allows the debugger to spy memory accesses and thus handle breakpoints and watchpoints.

Name: trap reporting export Interface:
unisim::service::interfaces

↪→::TrapReporting

Description:
This service export should be connected to a CPU module. A CPU module calls method
ReportTrap through its service import. This allows the debugger to break execution on
the simulated CPU when a trap condition is detected by the CPU module.

Service Imports
Name: memory import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::Memory<ADDRESS>

Description:
This service import should be connected to a CPU or a memory module. The debugger
uses this service import to access to memory using methods ReadMemory and WriteMemory.

33



Name: memory access reporting

↪→ control import

Mandatory connected: no

Interface:
unisim::service::interfaces

↪→::MemoryAccessReportingControl

Description:
This service import should be connected to a CPU module. The debugger calls meth-
ods RequiresMemoryAccessReporting and RequiresFinishedInstructionReporting

through this service import to enable/disable memory access reporting from the CPU
module.

Name: registers import

Mandatory connected: yes
Interface:
unisim::service::interfaces

↪→::Registers

Description:
This service import should be connected to a CPU module. The debugger calls method
GetRegister through this service import to get an interface to the CPU registers. The
debugger uses methods GetName, GetValue, GetSize and SetValue of that interface to
access to CPU registers.

34



2.4.5 Built-in Logger

UNISIM provides you a centralized log system to debug modules and simulators. It should be
used to show all debug messages, instead of using the traditional C++ stream output mechanism
(cerr and cout). However, as you will see below the UNISIM log system works much like the
C++ stream output mechanism.

It provides the following advantages:

• Categorization: messages can be categorized on information, warning and error messages

• Atomic messages: messages will not be mixed (something which happens when program-
ming concurrent/parallel systems like UNISIM/SystemC)

• Multiple outputs: your messages can be written simultaneously to different outputs, for
example:

– console (error output or standard output)

– raw file

– XML formatted file

– ...

• Simple configuration: the log system configuration is integrated to the UNISIM parameter
mechanism provided by UNISIM service, see 1.7.

To use the UNISIM logger you need to include unisim/kernel/logger/logger.hh and declare
that you are using the unisim::kernel::logger namespace:

1 #include "unisim/kernel/logger/logger.hh"

2

3 using namespace unisim::kernel::logger;

The logger can only be used by UNISIM objects, that is, classes that inherit from
unisim::kernel::service::Object. So if you want to use the UNISIM log system your class
must inherit from a UNISIM object.

1 class MyObject : public Object {
2 ...

3 };

You will need to create a member variable of the unisim::kernel::logger::Logger type.
And at the construction of your object use its default constructor
Logger(const unisim::kernel::service::Object &obj). For example:

1 #include "unisim/kernel/service/service.hh"

2 #include "unisim/kernel/logger/logger.hh"

3

4 using unisim::kernel::service::Object;

5 using namespace unisim::kernel::logger;

6

7 class MyObject : public Object {
8 private:

9 Logger logger;

10

11 public:

12 MyObject(const char *name, const Object *parent = 0) :

13 Object(name, parent),

14 logger(*this) {
15 ...

16 }
17 };

35



Once you have initialized your member logger variable you can start using it in your class
methods. Basically it works like an standard C++ output stream, with the << operator. How-
ever, it requires that you indicate when a message starts and ends, and its category (information,
warning or error) with the following keywords:

• DebugInfo and EndDebugInfo to start and end an information message

• DebugWarning and EndDebugWarning to start and end a warning message

• DebugError and EndDebugError to start and end an error message

You can use the keyword EndDebug instead of EndDebugInfo, EndDebugWarning or EndDebugWarning
to indicate that a message ends. The log system will automatically decide which kind of message
you are ending. Between the start and the end of a message you can use the logger as a normal
C++ output stream. Some of examples of its use:

1 /* displaying an information message */

2 logger << DebugInfo << "This is an information message" << EndDebugInfo;

3

4 /* displaying an information message using */

5 /* the EndDebug keyword to close the message */

6 logger << DebugInfo << "This is an information message" << EndDebug;

7

8 /* displaying a warning message written in multiple steps */

9 logger << DebugWarning << "This is the start of a warning message" << endl;

10 logger << "This is the end of the warning message." << EndDebug;

11

12 /* displaying an error message using variables */

13 unsigned int error = 25;

14 logger << DebugError << "This is an error message using variable ërror¨ with value "

15 << error << EndDebug;

36



2.5 Utility classes

The utility classes source code is in unisim/util.

2.5.1 Arithmetic and Logical helper functions

These functions located in unisim/util/arithmetic implement fast integer arithmetic compu-
tations (assembly on i386 machines):

• Full Adders (8, 16, 32, and 64 bits)

• Full Substractors (8, 16, 32, and 64 bits)

• Full Adders with signed saturation (8, 16, 32, and 64 bits)

• Full Substractors with signed saturation (8, 16, 32, and 64 bits)

• Specific Adders (e.g. reversed carry propagation adder)

• Rotates (left, right, through an additional virtual bit, with bit in, with bit out)

• Logical Shifts (left, right, through an additional virtual bit, with bit in, with bit out)

• Arithmetic Shifts (left, right, an additional virtual bit, with, with bit in, with bit out)

• Bit Scanning (from left to right, and from right to left)

• Base 2 Logarithm

• 2’s complement sign Extension

2.5.2 Debugging support

Directory unisim/util/debug provides several C++ classes that support:

• Symbol management (symbol table)

• Profile to keep software activity during a run (e.g. in inline debugger service)

• Breakpoint/watchpoint registry

• Register debugging support

• Network stub for implementing a fake device, remotely control the simulator, and cosim-
ulate with another external simulation environment

2.5.3 Endianness support

Directory unisim/util/endian provides support for fast endian conversion (assembly on i386
machines).

2.5.4 Hash Table

Directory unisim/util/hash table provides support for fast table lookup (e.g. for memory).

2.5.5 XML

Directory unisim/util/xml provides support for bare XML file (e.g. for GDB server service).

37



3 Validation guide

3.1 Setup

Figure 8: TMS320VC33 Board. Figure 9: TMS320VC33 board with JTAG.

The simulator validation involved using the TI C cross-compiler for Windows (see Section 1.5)
with the following versions:

• TMS320C3x/4x ANSI C Compiler Version 5.11

• TMS320C3x/4x ANSI C Optimizer Version 5.13

• TMS320C3x/4x ANSI C Code Generator Version 5.13

• TMS320C3x/4x COFF Assembler Version 5.12

• TMS320C3x/4x COFF Linker Version 5.11

The cross-compiler has generated COFF v2 files for TMS320C3X/C4X with little-endian
headers matching the endianness of our building host machine (Windows XP x86).
The host machine configurations used to test both compilation and run of the simulator are:

• Redhat Linux RHEL4 x86/gcc 3.4.6 (32-bit little-endian machine)

• Mandriva Linux 2009.1 x86/gcc 4.3.2 (32-bit little-endian machine)

• Mandriva Linux 2010.0 x86/gcc 4.4.1 (32-bit little-endian machine)

• Ubuntu Linux 7.04 powerpc/gcc 4.1.2 (32-bit big-endian machine)

• Ubuntu Linux 9.04 AMD64/x86 64/gcc 4.3.3 (64-bit little-endian machine)

• Mac OS X Leopard v10.5 x86/gcc 4.3.3 and gcc 4.4.2 (32-bit little-endian machine)

• Windows XP x86/gcc mingw32 4.4.0 (32 bit little-endian machine)

Note that the UNISIM TMS320C3X has also been run under the control of valgrind

(http://valgrind.org), a tool tracking memory related bugs such as memory leaks, unitialized
memory reads, and control statements that depends on unitialized variables.

The following developement board (see Figures 8 and 9) has been used to compare the
simulator results against a real TMS320C3X DSP:

• A D.SignT DK.VC33-150-S2 development board

38

http://valgrind.org


• A D.SignT D.Module.VC33-150-S2 module including a TI TMS320VC33PGE (150 MFLOPS)

• A 256K 32 bits SRAM with 1 Wait state

• A 512K 8 bits Flash Memory

• A Spectrum Digital XDS510USB JTAG Emulator

• Code Composer IDE 4.10.36 SP2 C3X’C4X for Windows

The UNISIM TMS320C3X has been validated using integer benchmarks, floating point
benchmarks, and unit tests of individual instructions. The next sections provide details about
the validation process.

3.2 Benchmarks

This section presents the validation process of UNISIM TMS320C3X simulator using some ap-
plication benchmarks. For that purpose, several integer benchmarks have been ported from the
MiBench benchmark suite to the TMS320C3X compiler tool chain. The floating-point bench-
marks have been extracted from the TMS320C3x DSK Software. The following document has
been used for selecting these floating-point benchmarks:

• TMS320C3x General Purpose Applications User’s Guide (SPRU194, January 1998)

These benchmarks have been run into the UNISIM TMS320C3X simulator using the appli-
cation profiling capability of the inline debugger:

$ tms320c3x -i -c sim_config.xml

Loading xml parameters from: sim_config.xml

Parameters set using file "sim_config.xml"

....

....

loader: Loading symbol table

loader: Loading string table

ti-c-io: TI C I/O support is enabled

ti-c-io: Using __CIOBUF_ at 0xeac00 as I/O buffer

ti-c-io: Installing emulator breakpoint (SWI) for I/O at 0x2003c34 (symbol C$$IO$$)

ti-c-io: Installing emulator breakpoint (SWI) for EXIT at 0x20001cc (symbol C$$EXIT)

Starting simulation at system privilege level

0x00800048 <_c_int00>:

0x00800048:0x08700080 LDP @0x800000

inline-debugger> break C$$EXIT

inline-debugger> continue

...

0x00800073 <C$$EXIT>:

0x00800073:0x66000000 SWI

inline-debugger> profile program

0x00800000 <_enable_insn_cache>:1 times:0x08750800 LDI 2048, ST

0x00800001 <.firm+0x1>:1 times:0x78800000 RETSU <@0x8012a9>

....

0x00801279 <_fclose()+0x39>:3 times:0x0e240000 POP R4

0x0080127a <_fclose()+0x3a>:3 times:0x18740002 SUBI 2, SP

0x0080127b <_fclose()+0x3b>:3 times:0x68000001 BU R1 <_exit()+0x12>

inline-debugger> quit

39



We extracted the instruction coverage from these applications profiles. The table below
shows the instruction coverage for each benchmark. Benchmarks Fibo, Quick sort, CRC32,
Rijndael, Sha, and ADPCM are integer benchmarks written in C. Benchmarks LP, BP, IIR, and
FFT are floating-point benchmarks written in C and assembly. Each general addressing mode
(see Table 9) of each TMS320C3X instruction (see Tables 1, 2, 3, 4, 5, 6 and 7), actually has a
row in the table. A tick into a cell at the intersection of a row and a column indicates that the
instruction of that row is covered by the benchmark of that column.

Although the integer benchmarks (written in C) have been selected to address the digital
signal processing application domain, they have only validated the general operations of the
simulator: program loading, program debugging, basic integer computation, control flow in-
structions, basic addressing modes . . . The reason of that limited validation scope is that the C
compiler does not generate many different instructions and addressing modes among the integer
benchmarks. For instance, unusual addressing modes as the indirect addressing with circular
modify and indirect addressing with bit reversed modify were not generated at all by the C com-
piler. Thus solely relying on these integer benchmarks for testing integer computation would
have resulted in quite poor instruction coverage. For instance, Instructions addc, negb, rol,
rolc, ror, rorc, subrb, addc3, subb3, and most of parallel instructions but ldi || ldi, ldi
|| sti, and sti || sti were not covered at all. Although the case of floating point bench-
marks (written in C and assembly) is similar with an incomplete instruction coverage, the use
of assembly has improved coverage of addressing modes and parallel instructions. For instance,
benchmarks IIR and FFT cover indirect addressing with circular modify and indirect addressing
with bit reversed modify. Nevertheless floating-point benchmarks insufficiently cover parallel in-
structions. Particularly, Instructions absf || stf, fix || sti, float || sti, negf || stf

were not covered at all.

Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/Q

u
an

ti
za

ti
on

L
P

B
P

II
R

F
F

T

lde

lde reg, reg
√

lde dir, reg

lde indir, reg

lde imm, reg
√

ldf

ldf reg, reg
√ √

ldf dir, reg

ldf indir, reg
√ √ √ √

ldf imm, reg
√ √ √

ldfcond

ldfcond reg, reg
√ √ √ √

ldfcond dir, reg
√ √ √ √

ldfcond indir, reg
√ √ √

ldfcond imm, reg
√ √ √ √

ldi

ldi reg, reg
√ √ √ √ √ √ √ √ √ √ √

ldi dir, reg
√ √ √ √ √ √ √ √ √ √ √ √

ldi indir, reg
√ √ √ √ √ √ √ √ √ √

40



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

ldi imm, reg
√ √ √ √ √ √ √ √ √ √ √

ldicond

ldicond reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

ldicond dir, reg
√ √ √ √ √ √ √ √ √ √ √ √

ldicond indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

ldicond imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

ldm

ldm reg, reg

ldm dir, reg

ldm indir, reg

ldm imm, reg
√

ldp

ldp src
√ √ √ √ √ √ √ √ √ √ √ √

pop

pop reg
√ √ √ √ √ √ √ √ √ √ √ √

popf

popf reg
√ √ √ √ √ √ √ √ √

push

push reg
√ √ √ √ √ √ √ √ √ √ √ √

pushf

pushf reg
√ √ √ √ √ √ √ √ √ √ √ √

stf

stf reg, dir
√

stf reg, indir
√ √ √ √

sti

sti reg, dir
√ √ √ √ √ √ √ √ √ √ √ √

sti reg, indir
√ √ √ √ √ √ √ √ √ √ √ √

ldfi

ldfi dir, reg

ldfi indir, reg

ldii

ldii dir, reg

ldii indir, reg

sigi

sigi

stfi

stfi reg, dir

stfi reg, indir

stii

stii reg, dir

stii reg, indir

41



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

bcond

bcond reg
√ √ √ √ √ √ √ √ √

bcond disp
√ √ √ √ √ √ √ √ √ √ √ √

bcondd

bcond d reg
√ √ √ √ √ √ √ √ √

bcond d disp
√ √ √ √ √ √ √ √ √ √ √ √

br

br src

brd

brd src

call

call src
√ √ √ √ √ √ √ √ √ √ √

callcond

callcond reg
√ √ √ √ √ √ √ √ √ √ √ √

callcond disp
√ √

dbcond

dbcond arn, reg

dbcond arn, disp
√ √ √

dbcondd

dbcond d arn, reg

dbcond d arn, disp
√ √ √ √

iack

iack dir

iack indir

idle

idle

nop

nop reg
√ √ √ √ √ √ √ √ √ √ √ √

nop indir

reticond

reticond

retscond

retscond
√ √ √ √ √ √ √ √ √ √ √ √

rptb

rptb src
√ √ √ √ √ √ √ √ √ √ √ √

rpts

rpts reg
√ √ √ √ √ √ √ √ √ √

rpts dir

rpts indir

rpts imm

swi

42



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

swi

trapcond

trapcond n

absf

absf reg, reg
√ √

absf dir, reg

absf indir, reg

absf imm, reg

absi

absi reg, reg
√ √ √ √ √ √

absi dir, reg

absi indir, reg

absi imm, reg

addc

addc reg, reg

addc dir, reg

addc indir, reg

addc imm, reg

addf

addf reg, reg
√ √ √

addf dir, reg
√ √

addf indir, reg
√

addf imm, reg

addi

addi reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

addi dir, reg
√ √ √ √ √ √ √ √ √ √ √ √

addi indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

addi imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

and

and reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

and dir, reg
√ √

and indir, reg
√ √ √ √ √ √ √ √ √ √ √

and imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

andn

andn reg, reg
√ √ √ √

andn dir, reg

andn indir, reg

andn imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

ash

ash reg, reg

ash dir, reg

43



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

ash indir, reg

ash imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

cmpf

cmpf reg, reg
√ √ √ √

cmpf dir, reg

cmpf indir, reg

cmpf imm, reg
√ √ √ √

cmpi

cmpi reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

cmpi dir, reg
√ √ √ √ √ √ √ √ √ √ √ √

cmpi indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

cmpi imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

fix

fix reg, reg
√ √ √ √

fix dir, reg

fix indir, reg

fix imm, reg

float

float reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

float dir, reg
√

float indir, reg

float imm, reg

lsh

lsh reg, reg
√ √ √ √ √ √ √ √ √ √ √

lsh dir, reg
√ √

lsh indir, reg

lsh imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

mpyf

mpyf reg, reg
√ √ √ √

mpyf dir, reg
√ √

mpyf indir, reg
√

mpyf imm, reg
√

mpyi

mpyi reg, reg
√ √ √ √ √ √ √ √ √ √ √

mpyi dir, reg

mpyi indir, reg

mpyi imm, reg

negb

negb reg, reg

negb dir, reg

negb indir, reg

44



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

negb imm, reg

negf

negf reg, reg
√ √ √ √

negf dir, reg

negf indir, reg

negf imm, reg

negi

negi reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

negi dir, reg

negi indir, reg

negi imm, reg

norm

norm reg, reg
√ √ √

norm dir, reg

norm indir, reg

norm imm, reg

not

not reg, reg
√ √ √

not dir, reg
√

not indir, reg

not imm, reg

or

or reg, reg

or dir, reg

or indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

or imm, reg
√ √ √ √ √ √ √ √ √ √ √

rnd

rnd reg, reg
√ √ √ √

rnd dir, reg

rnd indir, reg

rnd imm, reg

rol

rol reg

rolc

rolc reg

ror

ror reg

rorc

rorc reg

subb

subb reg, reg

45



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

subb dir, reg

subb indir, reg

subb imm, reg

subc

subc reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

subc dir, reg

subc indir, reg

subc imm, reg

subf

subf reg, reg
√

subf dir, reg

subf indir, reg
√

subf imm, reg

subi

subi reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

subi dir, reg

subi indir, reg

subi imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

subrb

subrb reg, reg

subrb dir, reg

subrb indir, reg

subrb imm, reg

subrf

subrf reg, reg
√ √ √ √

subrf dir, reg

subrf indir, reg

subrf imm, reg
√ √

subri

subri reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

subri dir, reg
√ √

subri indir, reg
√ √ √ √ √ √ √ √ √ √ √

subri imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

tstb

tstb reg, reg

tstb dir, reg

tstb indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

tstb imm, reg
√ √ √ √ √ √ √ √ √ √ √ √

xor

xor reg, reg
√ √

xor dir, reg

46



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

xor indir, reg
√ √

xor imm, reg

addc3

addc3 reg, reg, reg

addc3 indir, reg, reg

addc3 reg, indir, reg

addc3 indir, indir, reg

addf3

addf3 reg, reg, reg
√ √ √ √

addf3 indir, reg, reg

addf3 reg, indir, reg

addf3 indir, indir, reg
√

addi3

addi3 reg, reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

addi3 indir, reg, reg

addi3 reg, indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

addi3 indir, indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

and3

and3 reg, reg, reg
√ √ √ √

and3 indir, reg, reg

and3 reg, indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

and3 indir, indir, reg

andn3

andn3 reg, reg, reg
√

andn3 indir, reg, reg

andn3 reg, indir, reg

andn3 indir, indir, reg

ash3

ash3 reg, reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

ash3 indir, reg, reg

ash3 reg, indir, reg
√ √ √ √ √ √ √ √ √ √ √

ash3 indir, indir, reg

cmpf3

cmpf3 reg, reg
√ √ √ √

cmpf3 indir, reg

cmpf3 reg, indir

cmpf3 indir, indir

cmpi3

cmpi3 reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

cmpi3 indir, reg
√ √ √ √ √ √ √ √ √ √ √

cmpi3 reg, indir

47



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

cmpi3 indir, indir

lsh3

lsh3 reg, reg, reg
√ √

lsh3 indir, reg, reg

lsh3 reg, indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

lsh3 indir, indir, reg

mpyf3

mpyf3 reg, reg, reg
√ √ √ √

mpyf3 indir, reg, reg
√ √

mpyf3 reg, indir, reg

mpyf3 indir, indir, reg
√ √

mpyi3

mpyi3 reg, reg, reg
√ √ √ √ √ √ √ √ √ √

mpyi3 indir, reg, reg

mpyi3 reg, indir, reg

mpyi3 indir, indir, reg

or3

or3 reg, reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

or3 indir, reg, reg

or3 reg, indir, reg
√ √ √ √ √ √ √ √ √ √ √ √

or3 indir, indir, reg

subb3

subb3 reg, reg, reg

subb3 indir, reg, reg

subb3 reg, indir, reg

subb3 indir, indir, reg

subf3

subf3 reg, reg, reg
√ √

subf3 indir, reg, reg
√

subf3 reg, indir, reg

subf3 indir, indir, reg
√

subi3

subi3 reg, reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

subi3 indir, reg, reg
√ √ √ √ √ √ √ √ √ √ √ √

subi3 reg, indir, reg
√ √ √ √ √ √ √ √ √ √ √

subi3 indir, indir, reg
√ √ √ √ √ √ √ √ √ √

tstb3

tstb3 reg, reg

tstb3 indir, reg
√ √

tstb3 reg, indir

tstb3 indir, indir

48



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

xor3

xor3 reg, reg, reg
√ √ √ √ √ √ √

xor3 indir, reg, reg

xor3 reg, indir, reg
√ √

xor3 indir, indir, reg
√

absf || stf

absf indir, reg || stf reg, indir

absf reg, reg || stf reg, indir

absi || sti

absi indir, reg || sti reg, indir

absi reg, reg || sti reg, indir

addf3 || stf

addf3 reg, indir, reg || stf reg, indir

addf3 reg, reg, reg || stf reg, indir
√

addi3 || sti

addi3 reg, indir, reg || sti reg, indir

addi3 reg, reg, reg || sti reg, indir

and3 || sti

and3 reg, indir, reg || sti reg, indir

and3 reg, reg, reg || sti reg, indir

ash3 || sti

ash3 count, indir, reg || sti reg, indir

ash3 count, reg, reg || sti reg, indir

fix || sti

fix indir, reg || sti reg, indir

fix reg, reg || sti reg, indir

float || sti

float indir, reg || sti reg, indir

float reg, reg || sti reg, indir

ldf || ldf

ldf indir, reg || ldf indir, reg
√

ldf reg, reg || ldf indir, reg

ldf || stf

ldf indir, reg || stf reg, indir
√

ldf reg, reg || stf reg, indir

ldi || ldi

ldi indir, reg || ldi indir, reg
√ √ √ √ √ √ √ √ √ √

ldi reg, reg || ldi indir, reg

ldi || sti

ldi indir, reg || sti reg, indir
√ √ √ √ √ √ √ √ √ √ √ √

ldi reg, reg || sti reg, indir

49



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

lsh3 || sti

lsh3 count, indir, reg || sti reg, indir

lsh3 count, reg, reg || sti reg, indir

mpyf3 || addf3

mpyf3 indir, indir, reg || addf3 reg, reg, reg
√ √ √ √

mpyf3 indir, reg, reg || addf3 reg, reg, reg

mpyf3 reg, indir, reg || addf3 reg, reg, reg

mpyf3 reg, reg, reg || addf3 reg, reg, reg

mpyf3 indir, reg, reg || addf3 indir, reg, reg
√

mpyf3 reg, reg, reg || addf3 indir, reg, reg

mpyf3 reg, reg, reg || addf3 indir, indir, reg
√

mpyf3 reg, reg, reg || addf3 reg, indir, reg

mpyf3 indir, reg, reg || addf3 reg, indir, reg

mpyf3 || stf

mpyf3 indir, reg, reg || stf reg, indir
√

mpyf3 reg, reg, reg || stf reg, indir
√

mpyf3 || subf3

mpyf3 indir, indir, reg || subf3 reg, reg, reg

mpyf3 indir, reg, reg || subf3 reg, reg, reg

mpyf3 reg, indir, reg || subf3 reg, reg, reg

mpyf3 reg, reg, reg || subf3 reg, reg, reg

mpyf3 indir, reg, reg || subf3 indir, reg, reg

mpyf3 reg, reg, reg || subf3 indir, reg, reg

mpyf3 reg, reg, reg || subf3 indir, indir, reg
√

mpyf3 reg, reg, reg || subf3 reg, indir, reg

mpyf3 indir, reg, reg || subf3 reg, indir, reg

mpyi3 || addi3

mpyi3 indir, indir, reg || addi3 reg, reg, reg

mpyi3 indir, reg, reg || addi3 reg, reg, reg

mpyi3 reg, indir, reg || addi3 reg, reg, reg

mpyi3 reg, reg, reg || addi3 reg, reg, reg

mpyi3 indir, reg, reg || addi3 indir, reg, reg

mpyi3 reg, reg, reg || addi3 indir, reg, reg

mpyi3 reg, reg, reg || addi3 indir, indir, reg

mpyi3 reg, reg, reg || addi3 reg, indir, reg

mpyi3 indir, reg, reg || addi3 reg, indir, reg

mpyi3 || sti

mpyi3 indir, reg, reg || sti reg, indir

mpyi3 reg, reg, reg || sti reg, indir

mpyi3 || subi3

mpyi3 indir, indir, reg || subi3 reg, reg, reg

50



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
o
n

L
P

B
P

II
R

F
F

T

mpyi3 indir, reg, reg || subi3 reg, reg, reg

mpyi3 reg, indir, reg || subi3 reg, reg, reg

mpyi3 reg, reg, reg || subi3 reg, reg, reg

mpyi3 indir, reg, reg || subi3 indir, reg, reg

mpyi3 reg, reg, reg || subi3 indir, reg, reg

mpyi3 reg, reg, reg || subi3 indir, indir, reg

mpyi3 reg, reg, reg || subi3 reg, indir, reg

mpyi3 indir, reg, reg || subi3 reg, indir, reg

negf || stf

negf indir, reg || stf reg, indir

negf reg, reg || stf reg, indir

negi || sti

negi indir, reg || sti reg, indir

negi reg, reg || sti reg, indir

not || sti

not indir, reg || sti reg, indir

not reg, reg || sti reg, indir

or3 || sti

or3 reg, indir, reg || sti reg, indir

or3 reg, reg, reg || sti reg, indir

stf || stf

stf reg, indir || stf reg, indir
√

stf reg, reg || stf reg, indir

sti || sti

sti reg, indir || sti reg, indir
√

sti reg, reg || sti reg, indir

subf3 || stf

subf3 reg, indir, reg || stf reg, indir

subf3 reg, reg, reg || stf reg, indir
√

subi3 || sti

subi3 reg, indir, reg || sti reg, indir

subi3 reg, reg, reg || sti reg, indir

xor3 || sti

xor3 indir, reg, reg || sti reg, indir

xor3 reg, reg, reg || sti reg, indir

idle2

idle2

lopower

lowpower

maxspeed

maxspeed

51



Instruction F
ib

on
ac

ci

Q
u

ic
k

so
rt

C
R

C
32

R
ij

n
d

ae
l

S
h

a

A
D

P
C

M
co

d
er

A
D

P
C

M
d

ec
o
d

er

D
C

T
/
Q

u
an

ti
za

ti
on

L
P

B
P

II
R

F
F

T

3.2.1 Fibonacci

This benchmark recursively (and quite inefficiently) computes the Fibonacci numbers:
F1 = 1
F2 = 1
Fn = Fn−2 + Fn−1 where n > 2

It has validated general simulator operations such as program loading, stack management and
function calls. This benchmark requires the TI C I/O service enabled to run in the TMS320C3X
simulator. A precompiled binary (fibo.out) is provided together with a GNU Make compatible
Makefile. A simulation configuration (sim config.xml) for this simulator is also provided, so
that the simulator can run the benchmark using the following command:

$ tms320c3x -c sim_config.xml

The expected output on the screen of the benchmarks is:

Fibo(1)=1 (0x1)

Fibo(2)=1 (0x1)

Fibo(3)=2 (0x2)

Fibo(4)=3 (0x3)

Fibo(5)=5 (0x5)

Fibo(6)=8 (0x8)

Fibo(7)=13 (0xd)

Fibo(8)=21 (0x15)

Fibo(9)=34 (0x22)

Fibo(10)=55 (0x37)

Fibo(11)=89 (0x59)

Fibo(12)=144 (0x90)

Fibo(13)=233 (0xe9)

Fibo(14)=377 (0x179)

Fibo(15)=610 (0x262)

Fibo(16)=987 (0x3db)

Fibo(17)=1597 (0x63d)

Fibo(18)=2584 (0xa18)

Fibo(19)=4181 (0x1055)

Fibo(20)=6765 (0x1a6d)

Fibo(21)=10946 (0x2ac2)

Fibo(22)=17711 (0x452f)

Fibo(23)=28657 (0x6ff1)

Fibo(24)=46368 (0xb520)

Fibo(25)=75025 (0x12511)

Fibo(26)=121393 (0x1da31)

Fibo(27)=196418 (0x2ff42)

Fibo(28)=317811 (0x4d973)

52



Fibo(29)=514229 (0x7d8b5)

Fibo(30)=832040 (0xcb228)

Fibo(31)=1346269 (0x148add)

Fibo(32)=2178309 (0x213d05)

Fibo(33)=3524578 (0x35c7e2)

Fibo(34)=5702887 (0x5704e7)

3.2.2 Quick sort

This benchmark sorts 65536 integer numbers using the quick sort recursive algorithm. It has
validated general simulator operations such as program loading, stack management, function
calls, comparisons, arrays, and file I/O. The input data set is in file random.txt that contains
random generated integer numbers. The output data set after the benchmark run is in file
sort.sim.txt.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simulator.
A precompiled binary (quicksort.out) is provided together with a GNU Make compatible
Makefile. A simulation configuration (sim config.xml) for this simulator is also provided, so
that the simulator can run the benchmark using the following command:

$ tms320c3x -c sim_config.xml

The expected output data set is in file sort.ref.txt.

3.2.3 CRC32 (check sum)

This benchmark is based on CRC32 benchmark from MiBench Version 1.0 (http://www.eecs.
umich.edu/mibench). It performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC
checks are often used to detect errors in data transmission. This benchmark has been selected
because of its sensitivity to simulator failures. The benchmark reads file small.pcm and prints
the check sum on the screen

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simulator.
A precompiled binary is provided together with a GNU Make compatible Makefile. A simula-
tion configuration (sim config.xml) for this simulator is also provided, so that the simulator
can run the benchmark using the following command:

$ tms320c3x -c sim_config.xml

The expected output on the screen of the benchmarks is in file ref.txt:

32 BIT ANSI X3.66 CRC checksum:

Opening input file "small.pcm"

....................................................................................

Total number of bytes read: 1368864

CRC32: 6da5b639

3.2.4 Rijndael (encryption/decryption)

This benchmark is based on Rijndael benchmark from MiBench Version 1.0 (http://www.eecs.
umich.edu/mibench). Rijndael was selected as the National Institute of Standards and Tech-
nologies Advanced Encryption Standard (AES). It is a block cipher with the option of 128-,
192-, and 256-bit keys and blocks. This benchmark has been selected because of its sensitivity
to simulator failures.

In this benchmark, encryption is followed by decryption so that input data set and output
data set should be identical. The benchmark uses this hexadecimal encryption key:

53

http://www.eecs.umich.edu/mibench
http://www.eecs.umich.edu/mibench
http://www.eecs.umich.edu/mibench
http://www.eecs.umich.edu/mibench


1234567890abcdeffedcba09876543211234567890abcdeffedcba0987654321

The benchmark reads file input small.asc, and encrypt it into file output small.sim.enc. It
decrypts output small.sim.enc into file output small.sim.dec.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simula-
tor. A precompiled binary (rijndael.out) is provided together with a GNU Make compatible
Makefile. A simulation configuration (sim config.xml) for this simulator is also provided, so
that the simulator can run the benchmark using the following command:

$ tms320c3x -c sim_config.xml

It is expected that files input small.asc and output small.sim.dec be identical after the
benchmark run.

3.2.5 Sha (encryption/decryption)

This benchmark is based on SHA benchmark from MiBench Version 1.0 (http://www.eecs.
umich.edu/mibench). SHA is the secure hash algorithm that produces a 160-bit message digest
from a given input. It is often used in the secure exchange of cryptographic keys and for
generating digital signatures. It is also used in the well-known MD4 and MD5 hashing functions.
This benchmark has been selected because of its sensitivity to simulator failures.

The benchmark reads its input data set from file input small.asc and prints the SHA
digest on the screen.

A precompiled binary (sha.out) is provided together with a GNU Make compatible Makefile.
A simulation configuration (sim config.xml) for this simulator is also provided, so that the sim-
ulator can run the benchmark using the following command:

$ tms320c3x -c sim_config.xml

The expected output on the screen of the benchmark is in file ref.txt:

NIST Secure Hash Algorithm:

Opening input file "input_small.asc"

Computing SHA digest

SHA digest:

320c22e9 7b1ed440 77d2e55a bbe2481a 2b24a55b

3.2.6 ADPCM (sound encoding/decoding)

This benchmark is based on ADPCM benchmark from MiBench Version 1.0 (http://www.eecs.
umich.edu/mibench). It performs ADPCM encoding/decoding. Adaptive Differential Pulse
Code Modulation (ADPCM) is a variation of the well-known standard Pulse Code Modulation
(PCM). A common implementation takes 16-bit linear PCM samples and converts them to
4-bit samples, yielding a compression rate of 4:1. The input data are speech samples. This
benchmark has been selected because it is a typical application in digital signal processing.
The ADPCM coder benchmark reads file small.pcm and writes the compressed data in file
output small.sim.adpcm. The ADPCM decoder benchmark reads file small.adpcm and writes
the uncompressed data in file output small.sim.pcm.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simulator.
Precompiled binaries (coder.out and decoder.out) are provided together with a GNU Make
compatible Makefile. Simulation configurations (coder sim config.xml and decoder sim config.xml))
for this simulator are also provided, so that the simulator can run the benchmarks using the
following command:

54

http://www.eecs.umich.edu/mibench
http://www.eecs.umich.edu/mibench
http://www.eecs.umich.edu/mibench
http://www.eecs.umich.edu/mibench


$ tms320c3x -c coder_sim_config.xml

$ tms320c3x -c decoder_sim_config.xml

The expected output data set of the ADPCM coder benchmark is in file output small.ref.adpcm.
The expected output data set of the ADPCM decoder benchmark is in file output small.ref.pcm.

3.2.7 DCT/Quantization (image processing)

This benchmark is based on XVID video codec (http://www.xvid.org). The benchmarks has
the following steps that are the base of the JPEG lossy image compression standard:

1. Load a Windows 24-bit RGB Bitmap from a .bmp file;

2. Convert from RGB to YUV 4:4:4 for each 8x8 pixel blocks;

3. Compute a DCT on each 8x8 pixel blocks;

4. Quantize each 8x8 pixels blocks;

5. Dequantize each 8x8 pixels blocks;

6. Compute an iDCT on each 8x8 pixel blocks;

7. Convert from YUV 4:4:4 to RGB each 8x8 pixel blocks;

8. Save the resulting Windows 24-bit RGB bitmap into a .bmp file.

This benchmark has been selectedd because it is a typical application in imaging and digital
signal processing. The benchmark reads the input image from file image.bmp and the quantiza-
tion matrix from file quant mat.txt. It save the resulting image in file output image.sim.bmp.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simulator.
A precompiled binary (dct quant.out) is provided together with a GNU Make compatible
Makefile. A simulation configuration (sim config.xml) for this simulator is also provided, so
that simulator can run the benchmark using the following command:

$ tms320c3x -c sim_config.xml

The expected output image is in file output image.ref.bmp.

3.2.8 LP (Lowpass Finite Filter)

This benchmark performs the computation of a LowPass Finite (LP) Filter over a digital signal.
The LP Filter is programmed in assembler using the z-transform, which is widely utilized for the
analysis of discrete-time signals, simular to the Laplace transform for continuous-time signals.
The implementation is based on the algorithm description provided in “Digital Signal Processing:
Laboratory Experiments Using C and the TMS320C31 DSK” book by Rulph Chassaing (1999,
John Wiley & Sons, Inc.).

The benchmark is mainly written in assembler, and it has been modified to accept an input
signal within the “input signal.txt” file, to automatically compute the coefficients depending
on the input signal length and to generate an output on the “output.txt” file.

This benchmark has been selected to globally check the sequential behavior of floating point
instructions and the parallel floating point instructions.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simulator.
A precompiled binary (bp45.out) is provided together with a GNU Make compatible Makefile.
A simulation configuration file (sim config.xml) for this benchmark is also provided, so that
the simulator can run the benchmark with the following command:

55

http://www.xvid.org


-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  2  4  6  8  10

’./output.txt’

Figure 10: LP (Lowpass Finite Filter) output plot.

$ tms320c3x -c sim_config.xml

The expected output data set is in the output.ref.txt file. You can use plotting tools like
gnuplot to plot the generated output.

Figure 10 shows the plot of output.txt using the following command under gnuplot :

gnuplot > plot ’./output.txt’ with lines

3.2.9 BP (Bandpass Finite Filter)

This benchmark performs the computation of a BandPass Finite (LP) Filter over a digital sig-
nal. The LP Filter is programmed in assembler using the z-transform, which is widely utilized
for the analysis of discrete-time signals, simular to the Laplace transform for continuous-time
signals. The implementation is based on the algorithm description provided in “Digital Signal
Processing: Laboratory Experiments Using C and the TMS320C31 DSK” book by Rulph Chas-
saing (1999, John Wiley & Sons, Inc.). The benchmark is mainly written in assembler, and
it has been modified to accept an input signal (only 45 coefficients are considered) within the
“input signal.txt” file, and to generate an output on the “output.txt” file.

As for the LowPass filter benchmark, this benchmark has been selected to globally check the
sequential behavior of floating point instructions and some parallel floating point instructions.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simulator.
A precompiled binary (bp45.out) is provided together with a GNU Make compatible Makefile.
A simulation configuration file (sim config.xml) for this benchmark is also provided, so that
the simulator can run the benchmark with the following command:

$ tms320c3x -c sim_config.xml

The expected output data set is in the output.ref.txt file. You can use plotting tools like
gnuplot to plot the generated output.

56



-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20  25  30  35  40  45

’./output.txt’

Figure 11: BP (Bandpass Finite Filter) output plot.

Figure 11 shows the plot of output.txt using the following command under gnuplot :

gnuplot > plot ’./output.txt’ with lines

3.2.10 IIR (Biquad Infinite Filter)

This benchmarks performs the computation of an Infinite Impulse Response (IIR) Filter. The
previous filter benchmarks (see Sections 3.2.8 and 3.2.9) do not have analog counterpart. This
filter benchmark makes use of the vast knowledge already acquired with analog filters. The
design procedure involves the conversion of an analog filter to an equivalent discrete filter using
the bilinear transformation (BLT) technique. As such, the BLT procedure converts a transfer
function of an analog filter in the s-domain into an equivalent discrete-time transfer function in
the z -domain.

This benchmark is based on two implementations of the biquad algorithm provided by the
TI DSK 3 for the TMS320C3x. The first implementation is done in pure C and uses floating
point computation, and the second one is a fast version of the biquad algorithm programmed in
assembler. The benchmark provides at the end two different outputs, b output.txt for the C
implementation and fb output.txt for the implementation in assembler. Both outputs should
be the same.

The IIR benchmark has been selected for the following reasons:

1. It serves to check the correct sequential behavior of programs with an important use of
floating point computations.

2. It tests both floating point computations as generated by the TI C compiler and assembler
code, which uses specialized instructions as parallel float computations.

3. It tests complex addressing modes and specially the fast biquad implementation uses bit
reverse addressing mode.

57



-500

 0

 500

 1000

 1500

 2000

 0  50  100  150  200  250  300

’./b_output.txt’

Figure 12: Plot of the IIR program using gnuplot.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simula-
tor. A precompiled binary (biquad4.out) is provided together with a GNU Make compatible
Makefile. A simulation configuration file (sim config.xml) for this benchmark is also provided,
so that the simulator can run the benchmark with the following command:

$ tms320c3x -c sim_config.xml

The expected output data set is in the b output.ref.txt and fb output.ref.txt files.
You can use plotting tools like gnuplot to plot the generated outputs.

Figure 12 shows the plot of b output.txt using the following command under gnuplot :

gnuplot > plot ’./b_output.txt’ with lines

3.2.11 FFT (Fast Fourier Transform)

This benchmark simply computes a 512-point FFT (Fast Fourier Transform) using a Complex
Radix 2 given a signal input. It is based on the FFT codes provided by the TI DSK 3 for the
TMS320C3x, modified to accept an input signal described as frequency and amplitude in two
different input files: freq input.txt (for the frequency) and ampl input.txt (for the amplitude).
The benchmarks performs ten FFT iterations over the input signal and generates an output file
for each of the iterations (output*.txt, where “*” is the iteration number).

The FFT benchmark has been selected for the following reasons:

1. As for the other floating point benchmarks it serves to check the correct sequential behavior
of programs with an important use of floating point computations.

2. Most of the program is written in assembler, using parallel float instructions that would
otherwise have not been tested by the C compiler.

58



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  200  400  600  800  1000  1200

’output0.txt’

Figure 13: Plot of the FFT512 program first iteration using gnuplot.

3. The used FFT assembler implementation uses the bit reverse addressing mode, which is
particularly well suited for FFT computations.

This benchmark requires the TI C I/O service enabled to run in the TMS320C3X simulator.
A precompiled binary (fft.out) is provided together with a GNU Make compatible Makefile.
A simulation configuration file (sim config.xml) for this benchmark is also provided, so that
the simulator can run the benchmark with the following command:

$ tms320c3x -c sim_config.xml

The expected output data set is in the following files: output0.ref.txt, output1.ref.txt,
output2.ref.txt, output3.ref.txt, output4.ref.txt, output5.ref.txt, output6.ref.txt,
output7.ref.txt, output8.ref.txt, and output9.ref.txt. You can use plotting tools like
gnuplot to plot the generated outputs.

Figure 13 shows the plot of output0.txt using the following command under gnuplot :

gnuplot > plot ’./output0.txt’ with lines

3.3 Instruction level unit tests

As explained in Section 3.2, although they have validated general operations of the UNISIM
TMS320C3X simulator, both the integer and floating-point benchmarks have insufficiently cov-
ered the TMS320C3X instructions. Extensive testings at the instruction level are essential to
gain greater confidence in the UNISIM TMS320C3X simulator representativity. This section
presents the validation process of UNISIM TMS320C3X simulator at the instruction level. A
unit testing environment, in the form of a Makefile for GNU Make, has been developed to allow
testing individual instructions for the UNISIM TMS320C3X simulator. Testing an instruction
involves writing some ”glue” code (C and Assembly) around the instruction under test to pro-
vide it with the input operands read from the host filesystem, and to save instruction output

59



operands into a file on the host filesystem, so that results of instruction under test can be
observed and compared. A unit test generator, that is part of the testing environment, auto-
matically generates that ”glue” code, making writing and maintaining the instruction level unit
tests easier.

Section 3.3.1 presents the validation process and the test plan. Section 3.3.2 contains the
testing status at instruction level of UNISIM TMS320C3X simulator. Section 3.3.3 presents the
unit tests generator flow. Section 3.3.4 presents the testing environment and Section 3.3.5 shows
how to use it as a regression test for the UNISIM TMS320C3X simulator.

3.3.1 Validation process

For the purpose of validating the UNISIM TMS320C3X simulator, a factorial plan has been
established. The factorial plan parameters are:

• The general instruction under test, e.g. ldf, see Tables 1, 2, 3, 4, 5, 6 and 7

• The condition code, e.g. eq in ldfeq, see Table 8

• The general addressing mode (e.g. indir in ldfeq indir, reg), see Table 9:

– For an immediate addressing mode, the immediate value

– For an indirect addressing mode, one of 26 available indirect addressing modes, see
Table 10

• The input value set of the instruction, e.g. the value of indir memory operand in ldfeq

indir, reg

60



Instructions Description
lde Load Floating-Point Exponent
ldf Load Floating-Point Value
ldfcond Load Floating-point Value Conditionally
ldi Load Integer
ldicond Load Integer Conditionally
ldm Load Floating-Point Mantissa
ldp Load Data-Page Pointer
pop Pop Integer
popf Pop Floating-Point Value
push Push Integer
pushf Push Floating-Point Value
stf Store Floating-Point Value
sti Store Integer

Table 1: TMS320C3X Load/Store Instructions.

Instructions Description
ldfi Load Floating-Point Value, Interlocked
ldii Load Integer, Interlocked
sigi Signal, Interlocked
stfi Store Floating-Point Value, Interlocked
stii Store Integer, Interlocked

Table 2: TMS320C3X Interlocked Instructions.

Instructions Description
bcond Branch Conditionally (Standard)
bcondd Branch Conditionally (Delayed)
br Branch Unconditionally (Standard)
brd Branch Unconditionally (Delayed)
call Call Subroutine
callcond Call Subroutine Conditionally
dbcond Decrement and Branch Conditionally (Standard)
dbcondd Decrement and Branch Conditionally (Delayed)
iack Interrupt Acknowledge
idle Idle Until Interrupt
nop No Operation
reticond Return From Interrupt Conditionally
retscond Return From Subroutine Conditionally
rptb Repeat Block
rpts Repeat Single Instruction
swi Software Interrupt
trapcond Trap Conditionally

Table 3: TMS320C3X Control Instructions.

61



Instructions Description
absf Absolute Value of Floating-Point
absi Absolute Value of Integer
addc Add Integer With Carry
addf Add Floating-Point Values
addi Add Integer
and Bitwise-Logical AND
andn Bitwise-Logical AND With Complement
ash Arithmetic Shift
cmpf Compare Floating-Point Value
cmpi Compare Integer
fix Floating-Point-to-Integer Conversion
float Integer-to-Floating-Point Conversion
lsh Logical Shift
mpyf Multiply Floating-Point Value
mpyi Multiply Integer
negb Negative Integer With Borrow
negf Negative Floating-Point Value
negi Negate Integer
norm Normalize
not Bitwise-Logical Complement
or Bitwise-Logical OR
rnd Round Floating-Point Value
rol Rotate Left
rolc Rotate Left Through Carry
ror Rotate Right
rorc Rotate Right Through Carry
subb Substract Integer With Borrow
subc Substract Integer Conditionally
subf Substract Floating-Point Value
subi Substract Integer
subrb Substract Reverse Integer With Borrow
subrf Substract Reverse Floating-Point Value
subri Substract Reverse Integer
tstb Test Bit Fields
xor Bitwise-Exclusive OR

Table 4: TMS320C3X 2-operand Instructions.

62



Instructions Description
addc3 Add Integer With Carry, 3-Operand
addf3 Add Floating-Point, 3-Operand
addi3 Add Integer, 3-Operand
and3 Bitwise-Logical AND, 3-Operand
andn3 Bitwise-Logical AND With Complement, 3-Operand
ash3 Arithmetic Shift, 3-Operand
cmpf3 Compare Floating-Point Value, 3-Operand
cmpi3 Compare Integer, 3-Operand
lsh3 Logical Shift, 3-Operand
mpyf3 Multiply Floating-Point Value, 3-Operand
mpyi3 Multiply Integer, 3-Operand
or3 Bitwise-Logical OR, 3-Operand
subb3 Substract Integer With Borrow, 3-Operand
subf3 Substract Floating-Point Value, 3-Operand
subi3 Substract Integer, 3-Operand
tstb3 Test Bit Fields, 3-Operand
xor3 Bitwise-Exclusive OR, 3-Operand

Table 5: TMS320C3X 3-operand Instructions.

Instructions Description
absf || stf Parallel absf and stf
absi || sti Parallel absi and sti
addf3 || stf Parallel addf3 and stf
addi3 || sti Parallel addi3 and sti
and3 || sti Parallel and3 and sti
ash3 || sti Parallel ash3 and sti
fix || sti Parallel fix and sti
float || sti Parallel float and stf
ldf || ldf Parallel ldf and ldf
ldf || stf Parallel ldf and stf
ldi || ldi Parallel ldi and ldi
ldi || sti Parallel ldi and sti
lsh3 || sti Parallel lsh3 and sti
mpyf3 || addf3 Parallel mpyf3 and addf3
mpyf3 || stf Parallel mpyf3 and stf
mpyf3 || subf3 Parallel mpyf3 and subf3
mpyi3 || addi3 Parallel mpyi3 and addi3
mpyi3 || sti Parallel mpyi3 and sti
mpyi3 || subi3 Parallel mpyi3 and subi3
negf || stf Parallel negf and stf
negi || sti Parallel negi and sti
not || sti Parallel not and sti
or3 || sti Parallel or3 and sti
stf || stf Parallel Store Floating-Point Value
sti || sti Parallel sti and sti
subf3 || stf Parallel subf3 and stf
subi3 || sti Parallel subi3 and sti
xor3 || sti Parallel xor3 and sti

Table 6: TMS320C3X Parallel Instructions.

63



Instructions Description
idle2 Low-Power Idle
lopower Divide Clock by 16
maxspeed Restore Clock to Regular Speed

Table 7: TMS320C3X Parallel Instructions.

Condition codes
(20)

Description

u unconditional
lo lower than
ls lower than or same as
hi higher than
hs higher than or same as
eq equal
ne not equal
lt less than
le less than or equal
gt greater than
ge greater than or equal
nv no overflow
v overflow
nuf no floating-point underflow
uf floating-point underflow
nlv no overflow
lv overflow
nluf no latched floating-point underflow
luf latched floating-point underflow
zuf zero or floating-point underflow

Table 8: Condition codes.

General
Addressing
Modes (4)

Description

reg register addressing mode
dir direct addressing mode
imm immediate addressing mode
indir indirect addressing mode (see table)

Table 9: General addressing modes.

64



Indirect
Addressing
Modes (26)

Tests Description

*+arn(disp) *+arn(1) indirect addressing with predisplacement add
*-arn(disp) *-arn(1) indirect addressing with predisplacement subtract
*++arn(disp) *++arn(1) indirect addressing with predisplacement add and modify
*--arn(disp) *--arn(1) indirect addressing with predisplacement substract and modify
*arn++(disp) *arn++(1) indirect addressing with postdisplacement add and modify
*arn--(disp) *arn--(1) indirect addressing with postdisplacement substract and modify
*arn++(disp)% *arn++(1)%

bk ∈ {4,5}
indirect addressing with postdisplacement add and circular modify

*arn(disp)% *arn(disp)%

bk ∈ {4,5}
indirect addressing with postdisplacement substract and circular modify

*+arn(ir0) *+arn(ir0)

ir0 ∈ [0,15]
indirect addressing with preindex (ir0) add

*-arn(ir0) *-arn(ir0)

ir0 ∈ [0,15]
indirect addressing with preindex (ir0) substract

*++arn(ir0) *++arn(ir0)

ir0 ∈ [0,15]
indirect addressing with preindex (ir0) add and modify

*--arn(ir0) *--arn(ir0)

ir0 ∈ [0,15]
indirect addressing with preindex (ir0) substract and modify

*arn++(ir0) *arn++(ir0)

ir0 ∈ [0,15]
indirect addressing with postindex (ir0) add and modify

*arn--(ir0) *arn--(ir0)

ir0 ∈ [0,15]
indirect addressing with postindex (ir0) substract and modify

*arn++(ir0)% *arn++(ir0)%

ir0 ∈ [0,15]
bk ∈ {4,5}

indirect addressing with postindex (ir0) add and circular modify

*arn--(ir0)% *arn--(ir0)%

ir0 ∈ [0,15]
bk ∈ {4,5}

indirect addressing with postindex (ir0) substract and circular modify

*+arn(ir1) *+arn(ir1)

ir1 ∈ [0,15]
indirect addressing with preindex (ir1) add

*-arn(ir1) *-arn(ir1)

ir1 ∈ [0,15]
indirect addressing with preindex (ir1) substract

*++arn(ir1) *++arn(ir1)

ir1 ∈ [0,15]
indirect addressing with preindex (ir1) add and modify

*--arn(ir1) *--arn(ir1)

ir1 ∈ [0,15]
indirect addressing with preindex (ir1) substract and modify

*arn++(ir1) *arn++(ir1)

ir1 ∈ [0,15]
indirect addressing with postindex (ir1) add and modify

*arn--(ir1) *arn--(ir1)

ir1 ∈ [0,15]
indirect addressing with postindex (ir1) substract and modify

*arn++(ir1)% *arn++(ir1)%

ir1 ∈ [0,15]
bk ∈ {4,5}

indirect addressing with postindex (ir1) add and circular modify

*arn--(ir1)% *arn--(ir1)%

ir1 ∈ [0,15]
bk ∈ {4,5}

indirect addressing with postindex (ir1) substract and circular modify

*arn *arn indirect addressing
*arn++(ir0)b *arn++(ir0)b

ir1 ∈ [0,15]
indirect addressing with postindex (ir0) add and bit-reversed modify

Table 10: Indirect addressing modes.

65



This plan results in lot of instruction alternatives being tested (several condition codes
and addressing modes). A full exploration of the factorial plan would have resulted in an
unreasonable number of unit tests. To limit the number of unit tests and to still achieve a good
testing status, the following choices have been done:

• The amount of immediate addressing have been limited because each unit test of immediate
addressing results in one program. The following integer values have been tested: 0, -1, +1,
-32768, or +32767. These integer values have a special role in most integer computations
(neutral element, bound of integer immediate value . . . ). The following floating-point val-
ues have been tested: 0.0, 1.0, -1.0, 1.5, -1.5, 2.5594 ·102, 7.8125 ·10−3, −7.8163 ·10−3,
−2.56 · 102. These floating-point value have a special role in most floating-point computa-
tions (neutral element, smallest/largest positive/negative immediate floating-point values
. . . ).

• Condition codes have been varied exhaustively for conditional load/store and control in-
structions, see Table 8.

• Each general addressing mode has been tested for load/store, control, 2-operand, 3-
operand, and parallel instructions (note: some instructions allow only few of them), see
Table 9.

• All of the 26 indirect addressing modes have been tested for load/store instructions and
2-operand instructions (28 tests per instructions), see Table 10.

• Only one (*arn) of the 26 indirect addressing modes have been tested for 3-operand in-
structions and parallel instructions because testing all combinations of the 26 indirect ad-
dressing modes would have resulted in an unreasonable number of unit tests. The rational
behind this choice is that the instructions implementations in the UNISIM TMS320C3X
simulator share the same source code for the indirect addressing modes.

• 2-operand instructions with register addressing have been tested 10000 times with random
inputs.

• 3-operand instructions, load/store instructions, and parallel instructions with register,
direct and indirect addressing modes have been tested 100 times with random inputs.

• Additional tests have been written to check arn update ordering when instruction has
several operands with indirect addressing mode, or when arn is both updated by an indirect
addressing mode and the instruction itself.

• Random input integer values have an uniform distribution. Table 12 shows the distribu-
tion for the floating point numbers. Some remarkable values (neutral, smallest/largest
positive/negative floating-point values . . . ) have non-null probability of occurrence.

These choices still have resulted in 3757 unit test programs for a total of 694282 unit tests.

3.3.2 Testing status

The table below summarizes the testing status of all instructions. The total number of unit tests
is shown and the detail for the computation of that number is explained between parenthesis.
100rand means 100 tests with random inputs. 5imm means 5 tests with immediate addressing.
20cond means 20 tests for each condition codes. 28indir means 28 tests for each 26 indirect ad-
dressing mode. 1indir means only arn indirect addressing mode tested. 28isr means 28 interrupt
service routines tested. 1ar means one test for arn update ordering.

66



Instruction Tested? Description

lde

lde reg, reg Yes 100 unit tests (100rand)

lde dir, reg Yes 100 unit tests (100rand)

lde indir, reg Yes 2800 unit tests (28indir × 100rand)

lde imm, reg Yes 5 unit tests (5imm)

ldf

ldf reg, reg Yes 100 unit tests (100rand)

ldf dir, reg Yes 100 unit tests (100rand)

ldf indir, reg Yes 2800 unit tests (28indir × 100rand)

ldf imm, reg Yes 5 unit tests (5imm)

ldfcond

ldfcond reg, reg Yes 2000 unit tests (20cond × 100rand)

ldfcond dir, reg Yes 2000 unit tests (20cond × 100rand)

ldfcond indir, reg Yes 56K unit tests (28indir × 20cond× 100rand)

ldfcond imm, reg Yes 100 unit tests (100rand)

ldi

ldi reg, reg Yes 100 unit tests (100rand)

ldi dir, reg Yes 100 unit tests (100rand)

ldi indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

ldi imm, reg Yes 5 unit tests (5imm)

ldicond

ldicond reg, reg Yes 2000 unit tests (20cond × 100rand)

ldicond dir, reg Yes 2000 unit tests (20cond × 100rand)

ldicond indir, reg Yes 56K unit tests ((28indir + 1ar) × 20cond ×
100rand)

ldicond imm, reg Yes 100 unit tests (100rand)

ldm

ldm reg, reg Yes 100 unit tests (100rand)

ldm dir, reg Yes 100 unit tests (100rand)

ldm indir, reg Yes 2800 unit tests (28indir × 100rand)

ldm imm, reg Yes 5 unit tests (5imm)

ldp

ldp src Yes Any benchmark and unit test

pop

pop reg Yes Any benchmark and unit test

popf

popf reg Yes Any floating-point benchmark and unit
test

push

push reg Yes Any benchmark and unit test

pushf

67



Instruction Tested? Description

pushf reg Yes Any floating-point benchmark and unit
test

stf

stf reg, dir Yes 100 unit tests (100rand)

stf reg, indir Yes 2800 unit tests (28indir × 100rand)

sti

sti reg, dir Yes 100 unit tests (100rand)

sti reg, indir Yes 2900 unit tests ((28indir + 1ar)× 100rand)

ldfi

ldfi dir, reg No interlocked instruction behavior depends
on environment

ldfi indir, reg No Instruction behavior depends on environ-
ment

ldii

ldii dir, reg No Instruction behavior depends on environ-
ment

ldii indir, reg No Instruction behavior depends on environ-
ment

sigi

sigi No Unimplemented. Instruction behavior de-
pends on environment

stfi

stfi reg, dir No Instruction behavior depends on environ-
ment

stfi reg, indir No Instruction behavior depends on environ-
ment

stii

stii reg, dir No Instruction behavior depends on environ-
ment

stii reg, indir No Instruction behavior depends on environ-
ment

bcond

bcond reg Yes 2000 unit tests (20cond × 100rand)

bcond disp Yes 2000 unit tests (20cond × 100rand)

bcondd

bcond d reg Yes 2000 unit tests (20cond × 100rand)

bcond d disp Yes 2000 unit tests (20cond × 100rand)

br

br src Yes 100 unit tests (100rand)

brd

brd src Yes 100 unit tests (100rand)

call

call src Yes 100 unit tests (100rand)

callcond

callcond reg Yes 2000 unit tests (20cond × 100rand)

callcond disp Yes 2000 unit tests (20cond × 100rand)

dbcond

68



Instruction Tested? Description

dbcond arn, reg Yes 2000 unit tests (20cond × 100rand)

dbcond arn, disp Yes 2000 unit tests (20cond × 100rand)

dbcondd

dbcond d arn, reg Yes 2000 unit tests (20cond × 100rand)

dbcond d arn, disp Yes 2000 unit tests (20cond × 100rand)

iack

iack dir No Unimplemented. Instruction depends on
circuitry

iack indir No Unimplemented. Instruction depends on
circuitry

idle

idle No Instruction depends on external environ-
ment

nop

nop reg Yes State does not change

nop indir Yes State does not change

reticond

reticond Yes 2000 unit tests (20cond × 100rand)

retscond

retscond Yes 2000 unit tests (20cond × 100rand)

rptb

rptb src Yes 100 unit tests (100rand)

rpts

rpts reg Yes 100 unit tests (100rand)

rpts dir Yes 100 unit tests (100rand)

rpts indir Yes 100 unit tests (1indir × 100rand)

rpts imm Yes 1 unit tests (1imm)

swi

swi No Instruction depends on external environ-
ment

trapcond

trapcond n Yes 4800 unit tests ((20cond×1isr×100rand)+
(1cond × 28isr × 100rand))

absf

absf reg, reg Yes 10K unit tests (10Krand)

absf dir, reg Yes 100 unit tests (100rand)

absf indir, reg Yes 2800 unit tests (28indir × 100rand)

absf imm, reg Yes 5 unit tests (5imm)

absi

absi reg, reg Yes 10K unit tests (10Krand)

absi dir, reg Yes 100 unit tests (100rand)

absi indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

absi imm, reg Yes 5 unit tests (5imm)

addc

addc reg, reg Yes 10K unit tests (10Krand)

addc dir, reg Yes 100 unit tests (100rand)

addc indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

69



Instruction Tested? Description

addc imm, reg Yes 5 unit tests (5imm)

addf

addf reg, reg Yes 10K unit tests (10Krand)

addf dir, reg Yes 100 unit tests (100rand)

addf indir, reg Yes 2800 unit tests (28indir × 100rand)

addf imm, reg Yes 5 unit tests (5imm)

addi

addi reg, reg Yes 10K unit tests (10Krand)

addi dir, reg Yes 100 unit tests (100rand)

addi indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

addi imm, reg Yes 5 unit tests (5imm)

and

and reg, reg Yes 10K unit tests (10Krand)

and dir, reg Yes 100 unit tests (100rand)

and indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

and imm, reg Yes 5 unit tests (5imm)

andn

andn reg, reg Yes 10K unit tests (10Krand)

andn dir, reg Yes 100 unit tests (100rand)

andn indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

andn imm, reg Yes 5 unit tests (5imm)

ash

ash reg, reg Yes 10K unit tests (10Krand)

ash dir, reg Yes 100 unit tests (100rand)

ash indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

ash imm, reg Yes 5 unit tests (5imm)

cmpf

cmpf reg, reg Yes 10K unit tests (10Krand)

cmpf dir, reg Yes 100 unit tests (100rand)

cmpf indir, reg Yes 2800 unit tests (28indir × 100rand)

cmpf imm, reg Yes 5 unit tests (5imm)

cmpi

cmpi reg, reg Yes 10K unit tests (10Krand)

cmpi dir, reg Yes 100 unit tests (100rand)

cmpi indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

cmpi imm, reg Yes 5 unit tests (5imm)

fix

fix reg, reg Yes 10K unit tests (10Krand)

fix dir, reg Yes 100 unit tests (100rand)

fix indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

fix imm, reg Yes 5 unit tests (5imm)

float

float reg, reg Yes 10K unit tests (10Krand)

float dir, reg Yes 100 unit tests (100rand)

float indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

float imm, reg Yes 5 unit tests (5imm)

lsh

70



Instruction Tested? Description

lsh reg, reg Yes 10K unit tests (10Krand)

lsh dir, reg Yes 100 unit tests (100rand)

lsh indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

lsh imm, reg Yes 5 unit tests (5imm)

mpyf

mpyf reg, reg Yes 10K unit tests (10Krand)

mpyf dir, reg Yes 100 unit tests (100rand)

mpyf indir, reg Yes 2800 unit tests (28indir × 100rand)

mpyf imm, reg Yes 5 unit tests (5imm)

mpyi

mpyi reg, reg Yes 10K unit tests (10Krand)

mpyi dir, reg Yes 100 unit tests (100rand)

mpyi indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

mpyi imm, reg Yes 5 unit tests (5imm)

negb

negb reg, reg Yes 10K unit tests (10Krand)

negb dir, reg Yes 100 unit tests (100rand)

negb indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

negb imm, reg Yes 5 unit tests (5imm)

negf

negf reg, reg Yes 10K unit tests (10Krand)

negf dir, reg Yes 100 unit tests (100rand)

negf indir, reg Yes 2800 unit tests (28indir × 100rand)

negf imm, reg Yes 5 unit tests (5imm)

negi

negi reg, reg Yes 10K unit tests (10Krand)

negi dir, reg Yes 100 unit tests (100rand)

negi indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

negi imm, reg Yes 5 unit tests (5imm)

norm

norm reg, reg Yes 10K unit tests (10Krand)

norm dir, reg Yes 100 unit tests (100rand)

norm indir, reg Yes 2800 unit tests (28indir × 100rand)

norm imm, reg Yes 5 unit tests (5imm)

not

not reg, reg Yes 10K unit tests (10Krand)

not dir, reg Yes 100 unit tests (100rand)

not indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

not imm, reg Yes 5 unit tests (5imm)

or

or reg, reg Yes 10K unit tests (10Krand)

or dir, reg Yes 100 unit tests (100rand)

or indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

or imm, reg Yes 5 unit tests (5imm)

rnd

rnd reg, reg Yes 10K unit tests (10Krand)

rnd dir, reg Yes 100 unit tests (100rand)

71



Instruction Tested? Description

rnd indir, reg Yes 2800 unit tests (28indir × 100rand)

rnd imm, reg Yes 5 unit tests (5imm)

rol

rol reg Yes 10K unit tests (10Krand)

rolc

rolc reg Yes 10K unit tests (10Krand)

ror

ror reg Yes 10K unit tests (10Krand)

rorc

rorc reg Yes 10K unit tests (10Krand)

subb

subb reg, reg Yes 10K unit tests (10Krand)

subb dir, reg Yes 100 unit tests (100rand)

subb indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

subb imm, reg Yes 5 unit tests (5imm)

subc

subc reg, reg Yes 10K unit tests (10Krand)

subc dir, reg Yes 100 unit tests (100rand)

subc indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

subc imm, reg Yes 5 unit tests (5imm)

subf

subf reg, reg Yes 10K unit tests (10Krand)

subf dir, reg Yes 100 unit tests (100rand)

subf indir, reg Yes 2800 unit tests (28indir × 100rand)

subf imm, reg Yes 5 unit tests (5imm)

subi

subi reg, reg Yes 10K unit tests (10Krand)

subi dir, reg Yes 100 unit tests (100rand)

subi indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

subi imm, reg Yes 5 unit tests (5imm)

subrb

subrb reg, reg Yes 10K unit tests (10Krand)

subrb dir, reg Yes 100 unit tests (100rand)

subrb indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

subrb imm, reg Yes 5 unit tests (5imm)

subrf

subrf reg, reg Yes 10K unit tests (10Krand)

subrf dir, reg Yes 100 unit tests (100rand)

subrf indir, reg Yes 2800 unit tests (28indir × 100rand)

subrf imm, reg Yes 5 unit tests (5imm)

subri

subri reg, reg Yes 10K unit tests (10Krand)

subri dir, reg Yes 100 unit tests (100rand)

subri indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

subri imm, reg Yes 5 unit tests (5imm)

tstb

tstb reg, reg Yes 10K unit tests (10Krand)

72



Instruction Tested? Description

tstb dir, reg Yes 100 unit tests (100rand)

tstb indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

tstb imm, reg Yes 5 unit tests (5imm)

xor

xor reg, reg Yes 10K unit tests (10Krand)

xor dir, reg Yes 100 unit tests (100rand)

xor indir, reg Yes 2900 unit tests ((28indir + 1ar)× 100rand)

xor imm, reg Yes 5 unit tests (5imm)

addc3

addc3 reg, reg, reg Yes 100 unit tests (100rand)

addc3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

addc3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

addc3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

addf3

addf3 reg, reg, reg Yes 100 unit tests (100rand)

addf3 indir, reg, reg Yes 100 unit tests (1indir × 100rand)

addf3 reg, indir, reg Yes 100 unit tests (1indir × 100rand)

addf3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

addi3

addi3 reg, reg, reg Yes 100 unit tests (100rand)

addi3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

addi3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

addi3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

and3

and3 reg, reg, reg Yes 100 unit tests (100rand)

and3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

and3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

and3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

andn3

andn3 reg, reg, reg Yes 100 unit tests (100rand)

andn3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

andn3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

andn3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

ash3

ash3 reg, reg, reg Yes 100 unit tests (100rand)

ash3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

ash3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

ash3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

cmpf3

cmpf3 reg, reg Yes 100 unit tests (100rand)

cmpf3 indir, reg Yes 100 unit tests (1indir × 100rand)

73



Instruction Tested? Description

cmpf3 reg, indir Yes 100 unit tests (1indir × 100rand)

cmpf3 indir, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

cmpi3

cmpi3 reg, reg Yes 100 unit tests (100rand)

cmpi3 indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

cmpi3 reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

cmpi3 indir, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

lsh3

lsh3 reg, reg, reg Yes 100 unit tests (100rand)

lsh3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

lsh3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

lsh3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3

mpyf3 reg, reg, reg Yes 100 unit tests (100rand)

mpyf3 indir, reg, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 reg, indir, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3

mpyi3 reg, reg, reg Yes 100 unit tests (100rand)

mpyi3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

or3

or3 reg, reg, reg Yes 100 unit tests (100rand)

or3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

or3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

or3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

subb3

subb3 reg, reg, reg Yes 100 unit tests (100rand)

subb3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

subb3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

subb3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

subf3

subf3 reg, reg, reg Yes 100 unit tests (100rand)

subf3 indir, reg, reg Yes 100 unit tests (1indir × 100rand)

subf3 reg, indir, reg Yes 100 unit tests (1indir × 100rand)

subf3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

subi3

subi3 reg, reg, reg Yes 100 unit tests (100rand)

74



Instruction Tested? Description

subi3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

subi3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

subi3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

tstb3

tstb3 reg, reg, reg Yes 100 unit tests (100rand)

tstb3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

tstb3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

tstb3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

xor3

xor3 reg, reg, reg Yes 100 unit tests (100rand)

xor3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

xor3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

xor3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

absf || stf

absf indir, reg || stf reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

absf reg, reg || stf reg, indir Yes 100 unit tests (1indir × 100rand)

absi || sti

absi indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

absi reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

addf3 || stf

addf3 reg, indir, reg || stf reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

addf3 reg, reg, reg || stf reg, indir Yes 100 unit tests (1indir × 100rand)

addi3 || sti

addi3 reg, indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

addi3 reg, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

and3 || sti

and3 reg, indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

and3 reg, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

ash3 || sti

ash3 count, indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

ash3 count, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

fix || sti

fix indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

fix reg, reg || sti reg, indir Yes 100 unit tests (1indir × 100rand)

float || sti

float indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

75



Instruction Tested? Description

float reg, reg || sti reg, indir Yes 100 unit tests (1indir × 100rand)

ldf || ldf

ldf indir, reg || ldf indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

ldf reg, reg || ldf indir, reg Yes 100 unit tests (1indir × 100rand)

ldf || stf

ldf indir, reg || stf reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

ldf reg, reg || stf reg, indir Yes 100 unit tests (1indir × 100rand)

ldi || ldi

ldi indir, reg || ldi indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

ldi reg, reg || ldi indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

ldi || sti

ldi indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

ldi reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

lsh3 || sti

lsh3 count, indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

lsh3 count, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyf3 || addf3

mpyf3 indir, indir, reg || addf3 reg, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3 indir, reg, reg || addf3 reg, reg, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 reg, indir, reg || addf3 reg, reg, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 reg, reg, reg || addf3 reg, reg, reg Yes 100 unit tests (100rand)

mpyf3 indir, reg, reg || addf3 indir, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3 reg, reg, reg || addf3 indir, reg, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 reg, reg, reg || addf3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3 reg, reg, reg || addf3 reg, indir, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 indir, reg, reg || addf3 reg, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3 || stf

mpyf3 indir, reg, reg || stf reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3 reg, reg, reg || stf reg, indir Yes 100 unit tests (1indir × 100rand)

mpyf3 || subf3

mpyf3 indir, indir, reg || subf3 reg, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3 indir, reg, reg || subf3 reg, reg, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 reg, indir, reg || subf3 reg, reg, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 reg, reg, reg || subf3 reg, reg, reg Yes 100 unit tests (100rand)

mpyf3 indir, reg, reg || subf3 indir, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

76



Instruction Tested? Description

mpyf3 reg, reg, reg || subf3 indir, reg, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 reg, reg, reg || subf3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyf3 reg, reg, reg || subf3 reg, indir, reg Yes 100 unit tests (1indir × 100rand)

mpyf3 indir, reg, reg || subf3 reg, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 || addi3

mpyi3 indir, indir, reg || addi3 reg, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 indir, reg, reg || addi3 reg, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 reg, indir, reg || addi3 reg, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 reg, reg, reg || addi3 reg, reg, reg Yes 100 unit tests (100rand)

mpyi3 indir, reg, reg || addi3 indir, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 reg, reg, reg || addi3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 reg, reg, reg || addi3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 reg, reg, reg || addi3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 indir, reg, reg || addi3 reg, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 || sti

mpyi3 indir, reg, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 reg, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 || subi3

mpyi3 indir, indir, reg || subi3 reg, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 indir, reg, reg || subi3 reg, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 reg, indir, reg || subi3 reg, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 reg, reg, reg || subi3 reg, reg, reg Yes 100 unit tests (100rand)

mpyi3 indir, reg, reg || subi3 indir, reg, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 reg, reg, reg || subi3 indir, reg, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 reg, reg, reg || subi3 indir, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

mpyi3 reg, reg, reg || subi3 reg, indir, reg Yes 200 unit tests ((1indir + 1ar)× 100rand)

mpyi3 indir, reg, reg || subi3 reg, indir, reg Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

negf || stf

negf indir, reg || stf reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

negf reg, reg || stf reg, indir Yes 100 unit tests (1indir × 100rand)

negi || sti

negi indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

negi reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

not || sti

77



Instruction Tested? Description

not indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

not reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

or3 || sti

or3 reg, indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

or3 reg, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

stf || stf

stf reg, indir || stf reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

stf reg, reg || stf reg, indir Yes 100 unit tests (1indir × 100rand)

sti || sti

sti reg, indir || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

sti reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

subf3 || stf

subf3 reg, indir, reg || stf reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

subf3 reg, reg, reg || stf reg, indir Yes 100 unit tests (1indir × 100rand)

subi3 || sti

subi3 reg, indir, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

subi3 reg, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

xor3 || sti

xor3 indir, reg, reg || sti reg, indir Yes 200 unit tests ((1indir × 1indir + 1ar) ×
100rand)

xor3 reg, reg, reg || sti reg, indir Yes 200 unit tests ((1indir + 1ar)× 100rand)

idle2

idle2 No Instruction depends on external environ-
ment

lopower

lowpower No No effect on machine state.

maxspeed

maxspeed No No effect on machine state.

3.3.3 Unit tests generator

To ease the writing of each unit test of the above test plan, a unit test generator has been
developped, see Figure 14.

The generator needs an assembly pattern and some substitution strings to generate the unit
test source code, that is:

• an assembly function unit test (in file test.asm) with the C calling convention and stack
parameter passing convention,

• some random inputs for function unit test (random.txt),

• and a testbench written in C (main.c) that in a loop, reads inputs, calls function unit test,
and write outputs.

An assembly pattern is an assembly source code with special tags. These tags start with
character %. Most of them represent input/outputs that are substituted by real processor regis-
ters during assembly source code generation. Tag %subst is substituted by a substitution string

78



Figure 14: UNISIM TMS320C3X unit test gen-
erator.

Figure 15: A generated unit test.

1 ldiu %subst, bk ; Ê load block size (should be at most 8)

2 and %0 - 1, %src int reg ; Ë crop random value between 0 and bk - 1

3 ldiu %2, %clobber ir0; Ì load ir0 with this random value

4 ldiu %src float buf[16], %dst aux reg ; Í load a pointer to a buffer of 16 words

5 addi %subst, %6 ; Î
6 andn %7, %6 ; Ï align circular buffer start on block size

7 ldiu %st in, %clobber st ; Ð
8 %subst *%6++(ir0)%%, %src dst float reg; <-- instruction under test Ñ
9 ldiu st, %st out ; Ò

10

Figure 16: Example of assembly pattern.

; ---- INPUTS ----

; r0: a 32-bit integer register

; ar2: an auxiliary register pointing to an array of 16 32-bit floating point values

; r1: a 32-bit integer register (value for st)

; r2: a 40-bit floating point register

; ---- OUTPUTS ----

; ar4: an auxiliary register

; r2: a 40-bit floating point register

; r3: a 32-bit integer register (value of st)

ldiu 5, bk ; Ê load block size (should be at most 8)

and 5 - 1, r0 ; Ë crop random value between 0 and bk - 1

ldiu r0, ir0 ; Ì load ir0 with this random value

ldiu ar2, ar4 ; Í load a pointer to a buffer of 16 words

addi 7, ar4 ; Î

andn 7, ar4 ; Ï align circular buffer start on block size

ldiu r1, st ; Ð

addf *ar4++(ir0)%, r2 ; Ñ ← instruction under test

ldiu st, r3 ; Ò

Figure 17: Generated assembly from assembly pattern of Figure 16 and substitution strings
"5", "7", and "addf".

79



passed as a command line argument to the generator. Tag %clobber says to the generator that
assembly pattern explicitely clobber register following that tag and that the generator should
not allocate that register while substituing inputs and outputs. Table 11 lists the available tags.

Figure 16 shows an example of assembly pattern and Figure 17 shows the core of generated
assembly. During the generation process, each assembly pattern tag is replaced by real processor
registers or substitution strings:

Ê %subst is substituted by integer constant 5 passed as command line argument of the
generator;

Ë %0 is substituted as in Ê, while %src int reg is substituted with register r0;

Ì %clobber ir0 is substituted with register ir0 and register ir0 is marked as clobbered;

Í %src float buf[16] is substituted with register ar2 that points to an array of 16 32-bit
floating-point values allocated on the stack; %dst aux reg is substituted with register ar4;

Î %subst is substituted with integer constant 7 passed as command line argument to the
generator; %6 is substituted as %dst aux reg in Í;

Ï %7 is substituted as %subst in Î and %6 is substituted as %dst aux reg in Í;

Ð %st in is substituted with register r1 and register r1 is marked as containing state of
register st to enable pretty printing of its content, while %clobber st is substituted by
register st and register st is marked as clobbered;

Ñ %6 is substituted as %dst aux reg in Í; %% is substituted with %; %src dst float reg is
substituted with register r2;

Ò %st out is substituted with register r3 and register r3 is marked as containing state of
register st to enable pretty printing of its content.

The random inputs are obtained with a KISS (Keep It Simple Stupid) random number
generator (see http://www.math.niu.edu/~rusin/known-math/99/RNG) embedded in the unit
tests generator. The generator creates a uniform distribution for integer numbers. Table 12
shows the distribution for the floating point numbers.

The unit test source code can be compiled for the development board, and run on both
the development board and the UNISIM TMS320C3X simulator. As a unit test uses the TI
C I/O functions, it can reads inputs and write outputs from/to files of the host file system,
see Figure 15. Such capability has considerably reduced the complexity of testing the assembly
pattern under test on both the development board and the UNISIM TMS320C3X simulator.

A unit test reads manually selected inputs from file input.txt and some random generated
inputs from file random.txt. It writes outputs into file output.txt.

80

http://www.math.niu.edu/~rusin/known-math/99/RNG


Tag Type Storage type

%src int reg source 32-bit integer register

%src float reg source 40-bit floating-point register

%src aux reg source auxiliary register

%st in source 32-bit integer register (value for st)

%dst int reg destination 32-bit integer register

%dst float reg destination 40-bit floating-point register

%dst aux reg destination auxiliary register

%st out destination 32-bit integer register (value of st)

%src dst int reg source & destination 32-bit integer register

%src dst float reg source & destination 40-bit floating-point register

%src dst aux reg source & destination auxiliary register

%tmp int reg temporary 32-bit integer register

%tmp float reg temporary 40-bit floating-point register

%tmp aux reg temporary auxiliary register

%src int buf[dim] source auxiliary register pointing to an array of dim 32-bit integer values

%dst int buf[dim] destination auxiliary register pointing to an array of dim 32-bit integer values

%src float buf[dim] source auxiliary register pointing to an array of dim 32-bit floating-point values

%dst float buf[dim] destination auxiliary register pointing to an array of dim 32-bit floating-point values

%subst substitution N/A

%clobber reg clobber N/A

%0, %1, %2, ... reference N/A

Table 11: UNISIM TMS320C3X unit test generator assembly patterns tags.

Category Probability

-inf 1/37

smallest negative number 1/37

zero 1/37

real zero 1/37

smallest positive number 1/37

near to integer 2/37

+inf 1/37

small 2/37

large 2/37

mantissa near previously generated, fully random exponent 5/37

exponent near previously generated, fully random mantissa 5/37

float near previously generated 5/37

fully random 10/37

Table 12: UNISIM TMS320C3X unit test generator floating point distribution.

81



3.3.4 The testing environment

A testing environment has been set up using the unit test generator and assembly patterns. A
GNU Makefile is provided to run the unit tests on both the development board (our reference)
and the UNISIM TMS320C3X simulator. The test plan is located in the companion GNU bash
script factorial.sh, and more precisely in function ’factorial’. The goal of this function
is to generate an auxiliary Makefile (Makefile.aux) that contains building rules of planned
unit tests. A companion C++ program, generator is driven by this auxiliary Makefile to
generate the actual unit tests source code. The generated source code is then compiled for the
simulated target using the Texas Instruction cross-compilation tool chain. The resulting cross-
compiled binaries are executed on both a real TMS320C3X DSP using ’Code Composer’, and
the UNISIM TMS320C3X simulator. The real/reference execution results and the simulation
results are compared, and a failure diagnostic (PASSED or FAILED) is established for each
generated unit test program.

As explained in Section 3.3.3, the unit test program output is in file output.txt. To clearly
distinguish simulation results from real execution results, file output.txt (the unit test output)
is renamed output.ref when run on the development board or output.sim when run on the
UNISIM TMS320C3X simulator.
The list of supported Makefile targets is the following:

• generator(.exe): compile the unit tests generator (generator(.exe))

• compile: compile the unit tests for the TMS320C3X development board (objects/binaries
are test.obj, main.obj and test.out)

• rnd: generate the random input files (random.txt)

• execute: execute the unit tests on the TMS320C3X development board (EXECUTE must
be set) (execution result is in output.ref)

• simulate: run the simulator (SIMULATE must be set) (simulation results are in output.sim)

• check: compare simulator vs. reference (depends on diff) (check result is in output.check)

• diff: generate difference between simulation vs. reference (depends on execute and
simulate) (diff result is in output.diff)

• regression-test: launch a regression test of the UNISIM TMS320C3X simulator

• doc: generate unit tests documentation (unit tests.pdf)

• dist: distribute the testing environment together with reference outputs (output.ref)

• clean: clean everything (but execution results, use cleanref for that)

• cleangen: clean generator executable (generator(.exe))

• cleansrc: clean TMS320C3X generated source files (test.asm and main.c)

• cleanrnd: clean generated random input files (random.txt)

• cleanbin: clean TMS320C3X executable files (test.out)

• cleanobj: clean TMS320C3X object files (test.obj and main.obj)

• cleangel: clean GEL scripts (run.gel)

• cleansim: clean simulation results (output.sim)

82



• cleanref: clean execution results (output.ref)

• cleandiff: clean diff files (output.diff)

• cleancheck: clean check files (output.check)

• cleandoc: clean latex files (test.tex)

The following Makefile variables are available for tuning the Makefile:

• Mandatory:

– SIMULATE: path to the UNISIM TMS320C3X simulator binary

– EXECUTE: path to Code Composer executable (i.e. cc app.exe)

– DIST DIR: path to destination directory for a distribution

• Optional:

– COMPILER PREFIX: prefix to add before the compiler tools executables names (default:
empty)

The provided Makefile uses a GNU bash script factorial.sh, that contains a factorial
plan, to generate most of the Makefile rules in file Makefile.aux. To obtain the reference
outputs from the developement board, do the following at the command prompt:

$ make execute EXECUTE=cc_app.exe

Figure 18 shows the testing environment running on Windows and launching unit tests on
the development board.

Figure 18: GNU Make (on the left) launching unit tests
on the development board using code composer (on the
right)

Figure 19: VC33 device driver com-
munication problem.

Note: You may experience frequent failures of the JTAG Emulator (red LED that indicates
activity over USB get stuck), making Code Composer complain in a dialog box that it can’t
initialize target DSP, see Figure 19. Disconnect and reconnect the USB cable on the JTAG
emulator, and then click button ”Retry” to resume execution.

To obtain the simulation outputs from the UNISIM TMS320C3X simulator, do the following
at the command prompt:

83



$ make simulate SIMULATE=path-to-tms320c3x

3.3.5 Regression tests

The testing environment also acts as a regression test for UNISIM TMS320C3X simulator as
the expected results (output.ref) are already provided in the testing environment.

To cross-compile the unit tests programs, do the following at the command prompt on the
cross-compilation host:

$ make generator

$ make compile

$ make c31boot.out

Then to check that all unit tests successfully run on the UNISIM TMS320C3X simulator,
do the following at the command prompt on the simulation host:

$ make cleangen

$ make generator

$ make regression-test SIMULATE=path-to-tms320c3x

The result for each unit test program is either PASSED or FAILED.
Note: At most one instance of the Texas Instrument Cross-compiler can be run at a time

(at least on a Windows host and Wine). Using flag -j of GNU Make when compiling the unit
tests programs results in unexpected behaviors.

Note: Unit test program parallel float/stf stf/reg buf will likely fail because of a bug
in instruction STF || STF in the TMS320VC33 of our development board.

84



Appendices

Appendix A: Simulator technical reference (generated)

This documentation has been automatically generated from the simulator UNISIM tms320c3x

version 1.1beta1 on Oct 6 2011.

A.1 Introduction

UNISIM tms320c3x, a TMS320C3X DSP simulator with support of TI COFF binaries, and TI
C I/O (RTS run-time).

Section A.2 gives licensing informations about the simulator. Section A.3 shows the set of
modules and services that compose the simulator. Section A.4 shows how to invoke the simulator
at the command line prompt. Section A.5 gives the simulator parameters. Section A.6 gives the
simulator statistic counters. Section A.7 gives the simulator statistic formulas.

A.2 Licensing

UNISIM tms320c3x 1.1beta1
Copyright (C) 2009-2010, Commissariat a l’Energie Atomique (CEA)
License: BSD (see file COPYING)
Authors: Gilles Mouchard <gilles.mouchard@cea.fr>, Daniel Gracia Pérez <daniel.gracia-

perez@cea.fr>

A.3 Simulated configuration

The UNISIM tms320c3x simulator is composed of the following modules and services:

• cpu

• gdb-server: this service implements the GDB server remote serial protocol over TCP/IP.
Standards GDB clients (e.g. gdb, eclipse, ddd) can connect to the simulator to debug the
target application that runs within the simulator.

• host-time: this service is an abstraction layer for the host machine time

• inline-debugger: this service implements a built-in debugger in the terminal console

• loader

• memory: this module implements a memory

• rom-loader

• ti-c-io

A.4 Using the UNISIM tms320c3x simulator

The UNISIM tms320c3x simulator has the following command line options:

Usage: unisim-tms320c3x-1.1beta1 [<options>] [...]

Options:

• --set <param=value> or -s <param=value>: set value of parameter ’param’ to ’value’

• --config <XML file> or -c <XML file>: configures the simulator with the given
XML configuration file

• --get-config <XML file> or -g <XML file>: get the simulator configuration XML
file (you can use it to create your own configuration. This option can be combined with
-c to get a new configuration file with existing variables from another file

85



• --list or -l: lists all available parameters, their type, and their current value

• --warn or -w: enable printing of kernel warnings

• --doc <Latex file> or -d <Latex file>: enable printing a latex documentation

• --version or -v: displays the program version information

• --share-path <path> or -p <path>: the path that should be used for the share di-
rectory (absolute path)

• --help or -h: displays this help

A.5 Configuration

Simulator configuration (see below) can be modified using command line Options --set <param=value>
or --config <config file>.

Global
Name: enable-gdb-server Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
Enable/Disable GDB server instantiation.

Name: enable-inline-debugger Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
Enable/Disable inline debugger instantiation.

Name: enable-press-enter-at-exit Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Enable/Disable pressing key enter at exit.

Name: kernel logger.file Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Keep logger output in a file.

Name: kernel logger.filename Type: parameter

Default: logger output.txt Data type: string

Description:
Filename to keep logger output (the option file must be activated).

Name: kernel logger.std err Type: parameter

86



Default: true Data type: boolean

Valid: true, false

Description:
Show logger output through the standard error output.

Name: kernel logger.std err color Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Colorize logger output through the standard error output (only works if std err is active).

Name: kernel logger.std out Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Show logger output through the standard output.

Name: kernel logger.std out color Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Colorize logger output through the standard output (only works if std out is active).

Name: kernel logger.xml file Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Keep logger output in a file xml formatted.

Name: kernel logger.xml file gzipped Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
If the xml file option is active, the output file will be compressed (a .gz extension will be
automatically added to the xml filename option.

Name: kernel logger.xml filename Type: parameter

Default: logger output.xml Data type: string

Description:
Filename to keep logger xml output (the option xml file must be activated).

cpu
Name: cpu.max-inst Type: parameter

Default: 0xffffffffffffffff Data type: unsigned 64-bit integer

Name: cpu.trap-on-instruction-counter Type: parameter

87



Default: 0xffffffffffffffff Data type: unsigned 64-bit integer

Name: cpu.mimic-dev-board Type: parameter

Default: true Data type: boolean

Valid: true, false

Name: cpu.enable-parallel-load-bug Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
When using parallel loads (LDF src2, dst2 —— LDF src1, dst1) the src1 load doesn’t
transform incorrect zero values to valid zero representation, instead they copy the contents
of the memory to the register. Set to this parameter to false to transform incorrect zero
values..

Name: cpu.enable-rnd-bug Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
If enabled the ‘rnd‘ instruction sets the Z flag to 0 systematically, as it is done in the
evaluation board. Otherwise, Z is unchanged as it is written in the documentation..

Name: cpu.enable-parallel-store-

↪→bug

Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
If enabled, when using parallel stores (STF src2, dst2 —— STF src1, dst1) the first store
is treated as a NOP..

Name: cpu.enable-float-ops-with-

↪→non-ext-regs

Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
If enabled non extended registers can be used on all the float instructions, however the
behavior is not documented and can differ between chips revision. If disabled, it stops
simulation when using non extended registers on float instructions..

Name: cpu.verbose-all Type: parameter

Default: false Data type: boolean

Valid: true, false

Name: cpu.verbose-setup Type: parameter

Default: false Data type: boolean

Valid: true, false

gdb-server
Name: gdb-server.memory-atom-size Type: parameter

Default: 0x00000001 Data type: unsigned 32-bit integer

88



Description:
size of the smallest addressable element in memory.

Name: gdb-server.tcp-port Type: parameter

Default: 0x00003039 Data type: signed 32-bit integer

Description:
TCP/IP port to listen waiting for a GDB client connection.

Name: gdb-server.architecture-description-
↪→filename

Type: parameter

Default: Data type: string

Description:
filename of a XML description of the connected processor.

Name: gdb-server.verbose Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Enable/Disable verbosity.

inline-debugger
Name: inline-debugger.memory-atom-

↪→size

Type: parameter

Default: 0x00000001 Data type: unsigned 32-bit integer

Description:
size of the smallest addressable element in memory.

Name: inline-debugger.num-loaders Type: parameter

Default: 1 Data type: unsigned 32-bit integer

Description:
number of loaders.

Name: inline-debugger.search-path Type: parameter

Default: Data type: string

Description:
Search path for source (separated by ’;’).

Name: inline-debugger.init-macro Type: parameter

Default: Data type: string

89



Description:
path to initial macro to run when debugger starts.

Name: inline-debugger.output Type: parameter

Default: Data type: string

Description:
path to output file where to redirect the debugger outputs.

loader
Name: loader.filename Type: parameter

Default: Data type: string

Name: loader.dump-headers Type: parameter

Default: false Data type: boolean

Valid: true, false

Name: loader.verbose-write Type: parameter

Default: false Data type: boolean

Valid: true, false

memory
Name: memory.org Type: parameter

Default: 0x0000000000000000 Data type: unsigned 64-bit integer

Description:
memory origin/base address.

Name: memory.bytesize Type: parameter

Default: 0 Data type: unsigned 64-bit integer

Description:
memory size in bytes.

rom-loader
Name: rom-loader.filename Type: parameter

Default: c31boot.out Data type: string

Name: rom-loader.dump-headers Type: parameter

Default: false Data type: boolean

Valid: true, false

Name: rom-loader.verbose-write Type: parameter

Default: false Data type: boolean

Valid: true, false

ti-c-io
Name: ti-c-io.enable Type: parameter

Default: true Data type: boolean

Valid: true, false

Description:
enable/disable TI C I/O support.

90



Name: ti-c-io.warning-as-error Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
Whether Warnings are considered as error or not.

Name: ti-c-io.pc-register-name Type: parameter

Default: PC Data type: string

Description:
Name of the CPU program counter register.

Name: ti-c-io.c-io-buffer-symbol-

↪→name

Type: parameter

Default: CIOBUF Data type: string

Description:
C I/O buffer symbol name.

Name: ti-c-io.c-io-breakpoint-symbol-
↪→name

Type: parameter

Default: C$$IO$$ Data type: string

Description:
C I/O breakpoint symbol name.

Name: ti-c-io.c-exit-breakpoint-

↪→symbol-name

Type: parameter

Default: C$$EXIT Data type: string

Description:
C EXIT breakpoint symbol name.

Name: ti-c-io.verbose-all Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
globally enable/disable verbosity.

Name: ti-c-io.verbose-io Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
enable/disable verbosity while I/Os.

Name: ti-c-io.verbose-setup Type: parameter

Default: false Data type: boolean

91



Valid: true, false

Description:
enable/disable verbosity while setup.

Name: ti-c-io.enable-lseek-bug Type: parameter

Default: false Data type: boolean

Valid: true, false

Description:
enable/disable lseek bug (as code composer).

A.6 Statistics

Simulation statistic counters are listed below:

cpu
Name: cpu.instruction-counter Type: statistic

Data type: unsigned 64-bit integer

Name: cpu.insn-cache-hits Type: statistic

Data type: unsigned 64-bit integer

Name: cpu.insn-cache-misses Type: statistic

Data type: unsigned 64-bit integer

memory
Name: memory.memory-usage Type: statistic

Data type: unsigned 64-bit integer

Description:
host memory usage in bytes of simulated memory.

A.7 Formulas

Simulation statistic formulas are listed below:

92


	User guide
	Simulator features
	Status of implementation
	Compiling the simulator
	Invoking the simulator
	The Texas Instrument cross-compiler for TMS320C3X
	The GNU binutils
	Simulator configuration
	Debugging the target program

	Developer guide
	Simulation Components
	TMS320C3X instruction set simulator
	Memory

	Service infrastructure
	Class hierarchy
	Building a service graph
	Designing a service
	Designing a client
	Run-time parameters
	Setup Order

	Service Interfaces
	Memory Interfaces
	Debugging Interfaces
	Loader Interface
	Time Interface
	TI C I/O Interface

	Services
	COFF loader service
	TI C I/O service
	Inline debugger
	GDB server
	Built-in Logger

	Utility classes
	Arithmetic and Logical helper functions
	Debugging support
	Endianness support
	Hash Table
	XML


	Validation guide
	Setup
	Benchmarks
	Fibonacci
	Quick sort
	CRC32 (check sum)
	Rijndael (encryption/decryption)
	Sha (encryption/decryption)
	ADPCM (sound encoding/decoding)
	DCT/Quantization (image processing)
	LP (Lowpass Finite Filter)
	BP (Bandpass Finite Filter)
	IIR (Biquad Infinite Filter)
	FFT (Fast Fourier Transform)

	Instruction level unit tests
	Validation process
	Testing status
	Unit tests generator
	The testing environment
	Regression tests


	Appendix A: Simulator technical reference (generated)
	Introduction
	Licensing
	Simulated configuration
	Using the UNISIM tms320c3x simulator
	Configuration
	Statistics
	Formulas


