
UNISIM

GenISSLib Manual

Gilles Mouchard
Yves Lhuillier

CEA List

1 Introduction

Instruction set simulators are usefull for processor simulation, either architecture or micro-
architecture simulation. Architecture simulation, also called functional simulation, refers to
simulation of the processor instruction set, whereas micro-architecture simulation refers to com-
ponents inside the processor such as pipelines, caches, functional units, branch predictors. Im-
plementing the instruction set into a software instruction set simulator is needed for developping
and testing software before the target processor is available or for analyzing softwares without
disturbing their execution. To go from the instruction set specification to a software implemen-
tation of the instruction set, it is convenient to have a description language for easily describing
the instruction encoding, but most description languages are restricted to only few syntaxical
constructions for describing the instructions behavior. Beside, it is important to have a mul-
tipurpose instruction decoder as needs evolves. GenISSLib is intended for developping such
instruction set simulators. It uses a description language for describing instruction encoding.
C++ source code blended with the description language allow the use of complex instruction
behavior, or even more functionalities like disassembling, binary translation, system calls trans-
lation.

2 Quick Start

We will now presents you how to use GenISSLib through an example. Suppose that we want
to build an instruction set simulator for a simple 16-bit RISC processor, see table 2. We need
GenISSLib to generate C++ class ’Decoder’ to decode an instruction, and a C++ class ’Opera-
tion’ representing the decoded instruction. class ’Operation’ would have a C++ method named
’execute’ to execute the instruction, and a C++ method to disassemble the instruction into a
string buffer:

• Operation *Decoder::decode(uint16 t addr, uint16 t instruction)

– addr is the address of the instruction

– instruction is the instruction word to decode

– decode returns an instance of class Operation containing the decoded instruction

• void Operation::execute()

• void Operation::disasm(uint16 t pc, char *s)

– pc is the address of the instruction

– s is a string where to disassemble the instruction

1

GenISSLib automatically generates the Decoder class. To ask GenISSLib to generate execute
and disasm methods, we have to declare them using the description language, see figure 1. The
grammar of the description language is on figure 15. In the description language, execute and
disasm are actions having a prototype. The action prototype is simply a template for the ac-
tion. As you can see, the declaration in the instruction set simulator source code directly derives
from these action prototypes. If an instruction is invalid, we can tell GenISSLib to use a de-
fault implementation for the action. The default action implementation for execute is printing
"Unknown instruction\n" and exit whereas the default action implementation for disasm is
writing a "?" into the string s.

action {void} execute() {

printf("Unknown instruction\n");

exit(-1);

}

action {void} disasm({uint16_t pc, char *s}) {

sprintf(s, "?");

}

Figure 1: Declaring the execute and disasm action prototypes.

instructions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

add 0 0 0 0 rd rs1 rs2

sub 0 0 0 1 rd rs1 rs2

or 0 0 1 0 rd rs1 rs2

and 0 0 1 1 rd rs1 rs2

not 0 1 0 0 rd rs x x x x

shl 0 1 0 1 rd rs x x x x

shr 0 1 1 0 rd rs x x x x

load 0 1 1 1 rd base index

store 1 0 0 0 rd base index

branch 1 0 0 1 addr

bne 1 0 1 0 rs offset

Figure 2: Instruction Set Summary.

add add

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 rd rs1 rs2

(rd) ← (rs1) + (rs2)

Figure 3: The add instruction.

op add(0b0000[4]:rd[4]:rs1[4]:rs2[4])

Figure 4: declaration of the add operation

2

not negation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 rd rs x x x x

(rd) ← (rs)

Figure 5: The not instruction.

op not(0b0100[4]:rd[4]:rs[4]:?[4])

Figure 6: declaration of the not operation

We can now declare instruction encoding and the action implementation with the description
language. First, let’s consider the add instruction, see figures 3 and 2: it has a 4-bit opcode which
is 0000 and three 4-bit long operand register numbers encoded into the instruction word which
are rd, rs1 and rs2. In the description language operation refers to an instruction. 0b0000[4]
refers to the 4-bit opcode, rd[4] to the destination register number which is 4-bit long, rs1[4]
and rs2[4] respectively to the first and second source register numbers. Each bit fields are
separated by :. Instead of using binary digits as in 0b0000[4], we can also use decimal digits
as in 0[4], or hexadecimal digits as in 0x0[4].

Now, let’s declare the not instruction encoding, see figures 5 and 2: it has a 4-bit opcode
which is 0001, two 4-bit long operand register numbers which are rd and rs, and 4 don’t care
bits which can be either 0 or 1. The 4 don’t care bits are represented by ?[4] in the declaration
of the not operation.

Now, let’s implement the actions of the add operation, see figures 3 and 7. Implementation
of an action is just C code. We can directly use rd, rs1 and rs2 which have been declared in the
operation. We use an array (gpr) to represent the registers. The external declaration of that C
array can be done anywhere into the description language : we’ve just added between { and },
the external declarations of gpr and the memory access functions mem read and mem write, see
figure 8.

add.execute = {

gpr[rd] = gpr[rs1] + gpr[rs2];

}

add.disasm = {

sprintf(s, "add r%u, r%u, r%u", rd, rs1, rs2);

}

Figure 7: implementation of the execute and disasm of the add operation.

Now, let’s write the declaration of the load operation, and the implementation of its actions,
see figures 9 and 10: it has a 4-bit index which must be sign extended and added to a base
register to compute the effective address of the load. Thus we use the sext modifier into the
operation declaration. The minimum size in bits of the C variable index holding the index

operand field of the operation is supplied between <and >. When decoding a load instruction,
GenISSLib will sign extends the index bit field, and store it into the index C variable.

The implementation of the disasm action of the bne operation uses the pc parameter be-
cause we need that the disassembling of the bne instruction contains the target address of the
conditional branch, that is pc + offset not offset, see figures 11 and 12.

3

{

#include <inttypes.h>

extern uint16_t cia;

extern uint16_t nia;

extern uint16_t gpr[16];

extern uint16_t mem_read(uint16_t addr);

extern void mem_write(uint16_t addr, uint16_t value);

}

Figure 8: external declaration of C/C++ variables and functions.

load load word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 rd base index

ea ← (base) + index
(rd) ← Mem[ea]

Figure 9: The load instruction.

op load(0b0111[4]:rd[4]:base[4]:sext<16> immed[4])

load.execute = {

gpr[rd] = mem_read(gpr[base] + immed);

}

load.disasm = {

sprintf(s, "load r%u, %d(r%u)", rd, immed, base);

}

Figure 10: The load declaration and implementation.

bne conditional branch

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 rs offset

if (rs) <>0 then
NIA ← CIA + offset

else
NIA ← CIA + 1

Figure 11: The bne instruction.

Finally, we uses the generated function to implement the instruction set simulator main loop,
see figure 14. We also implement the external function used into the action implementations,
see figure 13.

4

op bne(0b1010[4]:rs[4]:sext<16> offset[8])

bne.execute = {

if(gpr[rs] != 0)

nia = cia + offset;

}

bne.disasm = {

sprintf(s, "bne r%u, 0x%04x", rs, pc + offset);

}

Figure 12: The bne declaration and implementation.

#include <inttypes.h>"

uint16_t cia;

uint16_t nia;

uint16_t gpr[16];

uint16_t mem[1 << 16];

uint16_t mem_read(uint16_t addr) {

return mem[addr];

}

void mem_write(uint16_t addr, uint16_t value) {

mem[addr] = value;

}

Figure 13: The implementation of the external data and functions.

3 Technical Reference

5

#include "risc16.hh"

#include <stdio.h>

int main(int argc, char *argv[]) {

int i;

FILE *f;

uint16_t instruction;

Operation *operation;

char disasm_buffer[256];

cia = 0;

nia = 0;

for(i = 0; i < 16; i++) gpr[i] = 0;

f = fopen("image", "rb");

fread(mem, 1, sizeof(mem), f);

fclose(f);

Decoder decoder;

for(i = 0; i < 1000; i++) {

instruction = mem_read(cia);

operation = decoder.decode(cia, instruction);

operation->disasm(cia, disasm_buffer);

printf("0x%04x: 0x%04x %s\n", cia, instruction,

disasm_buffer);

nia = cia + 1;

operation->execute();

cia = nia;

}

return 0;

}

Figure 14: The main simulation loop.

6

input → decl list
decl list → ε | decl list decl ←↩
decl → ε | op decl | action proto decl | action decl | source code decl | include decl
source code decl → source code
op decl → op identifier (bitfield list)
bitfield list → bitfield | bitfield list : bitfield
bitfield → integer [integer] | sext modifier size modifier identifier [integer] | ? [
integer]
sext modifier → ε | sext
size modifier → ε | < integer > | < >
action proto decl → static modifier action source code identifier (params) source code
params → ε | source code
static modifier → ε | static
action decl → identifier . identifier = source code
include decl → include string

source code is C++ source between { and }
identifier is an alphanumeric identifier
integer is a positive integer either binary, decimal or hexadecimal
string is a double-quoted character string
C (/* */) et C++ (//) comments are allowed anywhere.

Figure 15: The description language grammar.

7

